diff -r 4ed80ed7e433 -r b1802ebe0066 Utilities/crypto/py3AES.py --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Utilities/crypto/py3AES.py Sun Jun 19 15:19:46 2011 +0200 @@ -0,0 +1,835 @@ +#!/usr/bin/python3 +# +# aes.py: implements AES - Advanced Encryption Standard +# from the SlowAES project, http://code.google.com/p/slowaes/ +# +# Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ), +# Alex Martelli ( http://www.aleax.it ) +# +# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com ) +# +# Licensed under the Apache License, Version 2.0 +# http://www.apache.org/licenses/ +# + +# +# Ported to Python3 +# +# Copyright (c) 2011 Detlev Offenbach <detlev@die-offenbachs.de> +# + +""" +Module implementing classes for encryption according +Advanced Encryption Standard. +""" + +import os +import math + + +def append_PKCS7_padding(b): + """ + Function to pad the given data to a multiple of 16-bytes by PKCS7 padding. + + @param b data to be padded (bytes) + @return padded data (bytes) + """ + numpads = 16 - (len(b) % 16) + return b + numpads * bytes(chr(numpads), encoding="ascii") + + +def strip_PKCS7_padding(b): + """ + Function to strip off PKCS7 padding. + + @param b data to be stripped (bytes) + @return stripped data (bytes) + """ + if len(b) % 16 or not b: + raise ValueError("Data of len {0} can't be PCKS7-padded".format(len(b))) + numpads = b[-1] + if numpads > 16: + raise ValueError("Data ending with {0} can't be PCKS7-padded".format(b[-1])) + return b[:-numpads] + + +class AES(object): + """ + Class implementing the Advanced Encryption Standard algorithm. + """ + # valid key sizes + KeySize = { + "SIZE_128": 16, + "SIZE_192": 24, + "SIZE_256": 32, + } + + # Rijndael S-box + sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, + 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, + 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, + 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, + 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, + 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, + 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, + 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, + 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, + 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, + 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, + 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, + 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, + 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, + 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, + 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, + 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, + 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, + 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, + 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, + 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, + 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, + 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, + 0x54, 0xbb, 0x16] + + # Rijndael Inverted S-box + rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, + 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, + 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, + 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, + 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, + 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, + 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, + 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, + 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, + 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, + 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, + 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, + 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, + 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, + 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, + 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, + 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, + 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, + 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, + 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, + 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, + 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, + 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, + 0x21, 0x0c, 0x7d] + + # Rijndael Rcon + Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, + 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, + 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, + 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, + 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, + 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, + 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, + 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, + 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, + 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, + 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, + 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, + 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, + 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, + 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, + 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, + 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, + 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, + 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, + 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, + 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, + 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, + 0xe8, 0xcb] + + def __getSBoxValue(self, num): + """ + Private method to retrieve a given S-Box value. + + @param num position of the value (integer) + @return value of the S-Box (integer) + """ + return self.sbox[num] + + def __getSBoxInvert(self, num): + """ + Private method to retrieve a given Inverted S-Box value. + + @param num position of the value (integer) + @return value of the Inverted S-Box (integer) + """ + return self.rsbox[num] + + def __rotate(self, data): + """ + Private method performing Rijndael's key schedule rotate operation. + + Rotate the data word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d. + + @param data data of size 4 (bytearray) + """ + return data[1:] + data[:1] + + def __getRconValue(self, num): + """ + Private method to retrieve a given Rcon value. + + @param num position of the value (integer) + @return Rcon value (integer) + """ + return self.Rcon[num] + + def __core(self, data, iteration): + """ + Private method performing the key schedule core operation. + + @param data data to operate on (bytearray) + @param iteration iteration counter (integer) + @return modified data (bytearray) + """ + # rotate the 32-bit word 8 bits to the left + data = self.__rotate(data) + # apply S-Box substitution on all 4 parts of the 32-bit word + for i in range(4): + data[i] = self.__getSBoxValue(data[i]) + # XOR the output of the rcon operation with i to the first part + # (leftmost) only + data[0] = data[0] ^ self.__getRconValue(iteration) + return data + + def __expandKey(self, key, size, expandedKeySize): + """ + Private method performing Rijndael's key expansion. + + Expands a 128, 192 or 256 bit key into a 176, 208 or 240 bit key. + + @param key key to be expanded (bytes or bytearray) + @param size size of the key in bytes (16, 24 or 32) + @param expandedKeySize size of the expanded key (integer) + @return expanded key (bytearray) + """ + # current expanded keySize, in bytes + currentSize = 0 + rconIteration = 1 + expandedKey = bytearray(expandedKeySize) + + # set the 16, 24, 32 bytes of the expanded key to the input key + for j in range(size): + expandedKey[j] = key[j] + currentSize += size + + while currentSize < expandedKeySize: + # assign the previous 4 bytes to the temporary value t + t = expandedKey[currentSize - 4:currentSize] + + # every 16, 24, 32 bytes we apply the core schedule to t + # and increment rconIteration afterwards + if currentSize % size == 0: + t = self.__core(t, rconIteration) + rconIteration += 1 + # For 256-bit keys, we add an extra sbox to the calculation + if size == self.KeySize["SIZE_256"] and ((currentSize % size) == 16): + for l in range(4): + t[l] = self.__getSBoxValue(t[l]) + + # We XOR t with the four-byte block 16, 24, 32 bytes before the new + # expanded key. This becomes the next four bytes in the expanded key. + for m in range(4): + expandedKey[currentSize] = \ + expandedKey[currentSize - size] ^ t[m] + currentSize += 1 + + return expandedKey + + def __addRoundKey(self, state, roundKey): + """ + Private method to add (XORs) the round key to the state. + + @param state state to be changed (bytearray) + @param roundKey key to be used for the modification (bytearray) + @return modified state (bytearray) + """ + buf = state[:] + for i in range(16): + buf[i] ^= roundKey[i] + return buf + + def __createRoundKey(self, expandedKey, roundKeyPointer): + """ + Private method to create a round key. + + @param expandedKey expanded key to be used (bytearray) + @param roundKeyPointer position within the expanded key (integer) + @return round key (bytearray) + """ + roundKey = bytearray(16) + for i in range(4): + for j in range(4): + roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j] + return roundKey + + def __galois_multiplication(self, a, b): + """ + Private method to perform a Galois multiplication of 8 bit characters a and b. + + @param a first factor (byte) + @param b second factor (byte) + @return result (byte) + """ + p = 0 + for counter in range(8): + if b & 1: + p ^= a + hi_bit_set = a & 0x80 + a <<= 1 + # keep a 8 bit + a &= 0xFF + if hi_bit_set: + a ^= 0x1b + b >>= 1 + return p + + def __subBytes(self, state, isInv): + """ + Private method to substitute all the values from the state with the value in + the SBox using the state value as index for the SBox. + + @param state state to be worked on (bytearray) + @param isInv flag indicating an inverse operation (boolean) + @return modified state (bytearray) + """ + state = state[:] + if isInv: + getter = self.__getSBoxInvert + else: + getter = self.__getSBoxValue + for i in range(16): + state[i] = getter(state[i]) + return state + + def __shiftRows(self, state, isInv): + """ + Private method to iterate over the 4 rows and call __shiftRow() with + that row. + + @param state state to be worked on (bytearray) + @param isInv flag indicating an inverse operation (boolean) + @return modified state (bytearray) + """ + state = state[:] + for i in range(4): + state = self.__shiftRow(state, i * 4, i, isInv) + return state + + def __shiftRow(self, state, statePointer, nbr, isInv): + """ + Private method to shift the bytes of a row to the left. + + @param state state to be worked on (bytearray) + @param statePointer index into the state (integer) + @param nbr number of positions to shift (integer) + @param isInv flag indicating an inverse operation (boolean) + @return modified state (bytearray) + """ + state = state[:] + for i in range(nbr): + if isInv: + state[statePointer:statePointer + 4] = \ + state[statePointer + 3:statePointer + 4] + \ + state[statePointer:statePointer + 3] + else: + state[statePointer:statePointer + 4] = \ + state[statePointer + 1:statePointer + 4] + \ + state[statePointer:statePointer + 1] + return state + + def __mixColumns(self, state, isInv): + """ + Private method to perform a galois multiplication of the 4x4 matrix. + + @param state state to be worked on (bytearray) + @param isInv flag indicating an inverse operation (boolean) + @return modified state (bytearray) + """ + state = state[:] + # iterate over the 4 columns + for i in range(4): + # construct one column by slicing over the 4 rows + column = state[i:i + 16:4] + # apply the __mixColumn on one column + column = self.__mixColumn(column, isInv) + # put the values back into the state + state[i:i + 16:4] = column + + return state + + # galois multiplication of 1 column of the 4x4 matrix + def __mixColumn(self, column, isInv): + """ + Private method to perform a galois multiplication of 1 column the 4x4 matrix. + + @param column column to be worked on (bytearray) + @param isInv flag indicating an inverse operation (boolean) + @return modified column (bytearray) + """ + column = column[:] + if isInv: + mult = [14, 9, 13, 11] + else: + mult = [2, 1, 1, 3] + cpy = column[:] + g = self.__galois_multiplication + + column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \ + g(cpy[2], mult[2]) ^ g(cpy[1], mult[3]) + column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \ + g(cpy[3], mult[2]) ^ g(cpy[2], mult[3]) + column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \ + g(cpy[0], mult[2]) ^ g(cpy[3], mult[3]) + column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \ + g(cpy[1], mult[2]) ^ g(cpy[0], mult[3]) + return column + + def __aes_round(self, state, roundKey): + """ + Private method to apply the 4 operations of the forward round in sequence. + + @param state state to be worked on (bytearray) + @param roundKey round key to be used (bytearray) + @return modified state (bytearray) + """ + state = self.__subBytes(state, False) + state = self.__shiftRows(state, False) + state = self.__mixColumns(state, False) + state = self.__addRoundKey(state, roundKey) + return state + + def __aes_invRound(self, state, roundKey): + """ + Private method to apply the 4 operations of the inverse round in sequence. + + @param state state to be worked on (bytearray) + @param roundKey round key to be used (bytearray) + @return modified state (bytearray) + """ + state = self.__shiftRows(state, True) + state = self.__subBytes(state, True) + state = self.__addRoundKey(state, roundKey) + state = self.__mixColumns(state, True) + return state + + def __aes_main(self, state, expandedKey, nbrRounds): + """ + Private method to perform the initial operations, the standard round, and the + final operations of the forward AES, creating a round key for each round. + + @param state state to be worked on (bytearray) + @param expandedKey expanded key to be used (bytearray) + @param nbrRounds number of rounds to be done (integer) + @return modified state (bytearray) + """ + state = self.__addRoundKey(state, self.__createRoundKey(expandedKey, 0)) + i = 1 + while i < nbrRounds: + state = self.__aes_round( + state, self.__createRoundKey(expandedKey, 16 * i)) + i += 1 + state = self.__subBytes(state, False) + state = self.__shiftRows(state, False) + state = self.__addRoundKey( + state, self.__createRoundKey(expandedKey, 16 * nbrRounds)) + return state + + def __aes_invMain(self, state, expandedKey, nbrRounds): + """ + Private method to perform the initial operations, the standard round, and the + final operations of the inverse AES, creating a round key for each round. + + @param state state to be worked on (bytearray) + @param expandedKey expanded key to be used (bytearray) + @param nbrRounds number of rounds to be done (integer) + @return modified state (bytearray) + """ + state = self.__addRoundKey( + state, self.__createRoundKey(expandedKey, 16 * nbrRounds)) + i = nbrRounds - 1 + while i > 0: + state = self.__aes_invRound( + state, self.__createRoundKey(expandedKey, 16 * i)) + i -= 1 + state = self.__shiftRows(state, True) + state = self.__subBytes(state, True) + state = self.__addRoundKey(state, self.__createRoundKey(expandedKey, 0)) + return state + + def encrypt(self, iput, key, size): + """ + Public method to encrypt a 128 bit input block against the given key of size + specified. + + @param iput input data (bytearray) + @param key key to be used (bytes or bytearray) + @param size key size (16, 24 or 32) + @return encrypted data (bytes) + """ + output = bytearray(16) + # the number of rounds + nbrRounds = 0 + # the 128 bit block to encode + block = bytearray(16) + # set the number of rounds + if size == self.KeySize["SIZE_128"]: + nbrRounds = 10 + elif size == self.KeySize["SIZE_192"]: + nbrRounds = 12 + elif size == self.KeySize["SIZE_256"]: + nbrRounds = 14 + else: + raise ValueError("Wrong key size given ({0}).".format(size)) + + # the expanded keySize + expandedKeySize = 16 * (nbrRounds + 1) + + # Set the block values, for the block: + # a0,0 a0,1 a0,2 a0,3 + # a1,0 a1,1 a1,2 a1,3 + # a2,0 a2,1 a2,2 a2,3 + # a3,0 a3,1 a3,2 a3,3 + # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 + # + # iterate over the columns + for i in range(4): + # iterate over the rows + for j in range(4): + block[i + j * 4] = iput[i * 4 + j] + + # expand the key into an 176, 208, 240 bytes key + # the expanded key + expandedKey = self.__expandKey(key, size, expandedKeySize) + + # encrypt the block using the expandedKey + block = self.__aes_main(block, expandedKey, nbrRounds) + + # unmap the block again into the output + for k in range(4): + # iterate over the rows + for l in range(4): + output[k * 4 + l] = block[k + l * 4] + return bytes(output) + + # decrypts a 128 bit input block against the given key of size specified + def decrypt(self, iput, key, size): + """ + Public method to decrypt a 128 bit input block against the given key of size + specified. + + @param iput input data (bytearray) + @param key key to be used (bytes or bytearray) + @param size key size (16, 24 or 32) + @return decrypted data (bytes) + """ + output = bytearray(16) + # the number of rounds + nbrRounds = 0 + # the 128 bit block to decode + block = bytearray(16) + # set the number of rounds + if size == self.KeySize["SIZE_128"]: + nbrRounds = 10 + elif size == self.KeySize["SIZE_192"]: + nbrRounds = 12 + elif size == self.KeySize["SIZE_256"]: + nbrRounds = 14 + else: + raise ValueError("Wrong key size given ({0}).".format(size)) + + # the expanded keySize + expandedKeySize = 16 * (nbrRounds + 1) + + # Set the block values, for the block: + # a0,0 a0,1 a0,2 a0,3 + # a1,0 a1,1 a1,2 a1,3 + # a2,0 a2,1 a2,2 a2,3 + # a3,0 a3,1 a3,2 a3,3 + # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 + + # iterate over the columns + for i in range(4): + # iterate over the rows + for j in range(4): + block[i + j * 4] = iput[i * 4 + j] + # expand the key into an 176, 208, 240 bytes key + expandedKey = self.__expandKey(key, size, expandedKeySize) + # decrypt the block using the expandedKey + block = self.__aes_invMain(block, expandedKey, nbrRounds) + # unmap the block again into the output + for k in range(4): + # iterate over the rows + for l in range(4): + output[k * 4 + l] = block[k + l * 4] + return output + + +class AESModeOfOperation(object): + """ + Class implementing the different AES mode of operations. + """ + aes = AES() + + # structure of supported modes of operation + ModeOfOperation = { + "OFB": 0, + "CFB": 1, + "CBC": 2, + } + + def __extractBytes(self, input, start, end, mode): + """ + Private method to extract a range of bytes from the input. + + @param input input data (bytes) + @param start start index (integer) + @param end end index (integer) + @param mode mode of operation (0, 1, 2) + @return extracted bytes (bytearray) + """ + if end - start > 16: + end = start + 16 + if mode == self.ModeOfOperation["CBC"]: + ar = bytearray(16) + else: + ar = bytearray() + + i = start + j = 0 + while len(ar) < end - start: + ar.append(0) + while i < end: + ar[j] = input[i] + j += 1 + i += 1 + return ar + + def encrypt(self, input, mode, key, size, IV): + """ + Public method to perform the encryption operation. + + @param input data to be encrypted (bytes) + @param mode mode of operation (0, 1 or 2) + @param key key to be used (bytes) + @param size length of the key (integer) + @param IV initialisation vector (bytearray) + @return tuple with mode of operation, length of the input and + the encrypted data (integer, integer, bytes) + """ + if len(key) % size: + raise ValueError("Illegal size ({0}) for key '{1}'.".format( + size, key)) + if len(IV) % 16: + raise ValueError("IV is not a multiple of 16.") + # the AES input/output + iput = bytearray(16) + output = bytearray() + ciphertext = bytearray(16) + # the output cipher string + cipherOut = bytearray() + # char firstRound + firstRound = True + if input: + for j in range(int(math.ceil(float(len(input)) / 16))): + start = j * 16 + end = j * 16 + 16 + if end > len(input): + end = len(input) + plaintext = self.__extractBytes(input, start, end, mode) + # print 'PT@%s:%s' % (j, plaintext) + if mode == self.ModeOfOperation["CFB"]: + if firstRound: + output = self.aes.encrypt(IV, key, size) + firstRound = False + else: + output = self.aes.encrypt(iput, key, size) + for i in range(16): + if len(plaintext) - 1 < i: + ciphertext[i] = 0 ^ output[i] + elif len(output) - 1 < i: + ciphertext[i] = plaintext[i] ^ 0 + elif len(plaintext) - 1 < i and len(output) < i: + ciphertext[i] = 0 ^ 0 + else: + ciphertext[i] = plaintext[i] ^ output[i] + for k in range(end - start): + cipherOut.append(ciphertext[k]) + iput = ciphertext + elif mode == self.ModeOfOperation["OFB"]: + if firstRound: + output = self.aes.encrypt(IV, key, size) + firstRound = False + else: + output = self.aes.encrypt(iput, key, size) + for i in range(16): + if len(plaintext) - 1 < i: + ciphertext[i] = 0 ^ output[i] + elif len(output) - 1 < i: + ciphertext[i] = plaintext[i] ^ 0 + elif len(plaintext) - 1 < i and len(output) < i: + ciphertext[i] = 0 ^ 0 + else: + ciphertext[i] = plaintext[i] ^ output[i] + for k in range(end - start): + cipherOut.append(ciphertext[k]) + iput = output + elif mode == self.ModeOfOperation["CBC"]: + for i in range(16): + if firstRound: + iput[i] = plaintext[i] ^ IV[i] + else: + iput[i] = plaintext[i] ^ ciphertext[i] + # print 'IP@%s:%s' % (j, iput) + firstRound = False + ciphertext = self.aes.encrypt(iput, key, size) + # always 16 bytes because of the padding for CBC + for k in range(16): + cipherOut.append(ciphertext[k]) + return mode, len(input), bytes(cipherOut) + + # Mode of Operation Decryption + # cipherIn - Encrypted String + # originalsize - The unencrypted string length - required for CBC + # mode - mode of type modeOfOperation + # key - a number array of the bit length size + # size - the bit length of the key + # IV - the 128 bit number array Initilization Vector + def decrypt(self, cipherIn, originalsize, mode, key, size, IV): + """ + Public method to perform the decryption operation. + + @param input data to be encrypted (bytes) + @param originalsize unencrypted string length (required for CBC) + (integer) + @param mode mode of operation (0, 1 or 2) + @param key key to be used (bytes) + @param size length of the key (integer) + @param IV initialisation vector (bytearray) + @return decrypted data (bytes) + """ + if len(key) % size: + raise ValueError("Illegal size ({0}) for key '{1}'.".format( + size, key)) + if len(IV) % 16: + raise ValueError("IV is not a multiple of 16.") + # the AES input/output + ciphertext = bytearray() + iput = bytearray() + output = bytearray() + plaintext = bytearray(16) + # the output bytes + bytesOut = bytearray() + # char firstRound + firstRound = True + if cipherIn != None: + for j in range(int(math.ceil(float(len(cipherIn)) / 16))): + start = j * 16 + end = j * 16 + 16 + if j * 16 + 16 > len(cipherIn): + end = len(cipherIn) + ciphertext = cipherIn[start:end] + if mode == self.ModeOfOperation["CFB"]: + if firstRound: + output = self.aes.encrypt(IV, key, size) + firstRound = False + else: + output = self.aes.encrypt(iput, key, size) + for i in range(16): + if len(output) - 1 < i: + plaintext[i] = 0 ^ ciphertext[i] + elif len(ciphertext) - 1 < i: + plaintext[i] = output[i] ^ 0 + elif len(output) - 1 < i and len(ciphertext) < i: + plaintext[i] = 0 ^ 0 + else: + plaintext[i] = output[i] ^ ciphertext[i] + for k in range(end - start): + bytesOut.append(plaintext[k]) + iput = ciphertext + elif mode == self.ModeOfOperation["OFB"]: + if firstRound: + output = self.aes.encrypt(IV, key, size) + firstRound = False + else: + output = self.aes.encrypt(iput, key, size) + for i in range(16): + if len(output) - 1 < i: + plaintext[i] = 0 ^ ciphertext[i] + elif len(ciphertext) - 1 < i: + plaintext[i] = output[i] ^ 0 + elif len(output) - 1 < i and len(ciphertext) < i: + plaintext[i] = 0 ^ 0 + else: + plaintext[i] = output[i] ^ ciphertext[i] + for k in range(end - start): + bytesOut.append(plaintext[k]) + iput = output + elif mode == self.ModeOfOperation["CBC"]: + output = self.aes.decrypt(ciphertext, key, size) + for i in range(16): + if firstRound: + plaintext[i] = IV[i] ^ output[i] + else: + plaintext[i] = iput[i] ^ output[i] + firstRound = False + if originalsize is not None and originalsize < end: + for k in range(originalsize - start): + bytesOut.append(plaintext[k]) + else: + for k in range(end - start): + bytesOut.append(plaintext[k]) + iput = ciphertext + return bytes(bytesOut) + + +def encryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]): + """ + Module function to encrypt the given data with the given key. + + @param key key to be used for encryption (bytes) + @param data data to be encrypted (bytes) + @param mode mode of operations (0, 1 or 2) + @return encrypted data prepended with the initialization vector (bytes) + """ + key = bytearray(key) + if mode == AESModeOfOperation.ModeOfOperation["CBC"]: + data = append_PKCS7_padding(data) + keysize = len(key) + assert keysize in AES.KeySize.values(), 'invalid key size: {0}'.format(keysize) + # create a new iv using random data + iv = bytearray([i for i in os.urandom(16)]) + moo = AESModeOfOperation() + mode, length, ciph = moo.encrypt(data, mode, key, keysize, iv) + # With padding, the original length does not need to be known. It's a bad + # idea to store the original message length. + # prepend the iv. + return bytes(iv) + bytes(ciph) + + +def decryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]): + """ + Module function to decrypt the given data with the given key. + + @param key key to be used for decryption (bytes) + @param data data to be decrypted (with initialization vector prepended) (bytes) + @param mode mode of operations (0, 1 or 2) + @return decrypted data (bytes) + @exception ValueError key size is invalid or decrypted data is invalid + """ + key = bytearray(key) + keysize = len(key) + assert keysize in AES.KeySize.values(), 'invalid key size: %s' % keysize + # iv is first 16 bytes + iv = bytearray(data[:16]) + data = bytearray(data[16:]) + moo = AESModeOfOperation() + decr = moo.decrypt(data, None, mode, key, keysize, iv) + if mode == AESModeOfOperation.ModeOfOperation["CBC"]: + decr = strip_PKCS7_padding(decr) + return bytes(decr)