Sat, 26 Jan 2013 12:41:53 +0100
Fixed severe bugs in the coverage integration.
"""Code parsing for Coverage.""" import glob, opcode, os, re, sys, token, tokenize from .backward import set, sorted, StringIO # pylint: disable-msg=W0622 from .bytecode import ByteCodes, CodeObjects from .misc import nice_pair, CoverageException, NoSource, expensive class CodeParser(object): """Parse code to find executable lines, excluded lines, etc.""" def __init__(self, text=None, filename=None, exclude=None): """ Source can be provided as `text`, the text itself, or `filename`, from which text will be read. Excluded lines are those that match `exclude`, a regex. """ assert text or filename, "CodeParser needs either text or filename" self.filename = filename or "<code>" self.text = text if not self.text: try: sourcef = open(self.filename, 'rU') self.text = sourcef.read() sourcef.close() except IOError: _, err, _ = sys.exc_info() raise NoSource( "No source for code: %r: %s" % (self.filename, err) ) self.text = self.text.replace('\r\n', '\n') self.exclude = exclude self.show_tokens = False # The text lines of the parsed code. self.lines = self.text.split('\n') # The line numbers of excluded lines of code. self.excluded = set() # The line numbers of docstring lines. self.docstrings = set() # The line numbers of class definitions. self.classdefs = set() # A dict mapping line numbers to (lo,hi) for multi-line statements. self.multiline = {} # The line numbers that start statements. self.statement_starts = set() # Lazily-created ByteParser self._byte_parser = None def _get_byte_parser(self): """Create a ByteParser on demand.""" if not self._byte_parser: self._byte_parser = \ ByteParser(text=self.text, filename=self.filename) return self._byte_parser byte_parser = property(_get_byte_parser) def _raw_parse(self): """Parse the source to find the interesting facts about its lines. A handful of member fields are updated. """ # Find lines which match an exclusion pattern. if self.exclude: re_exclude = re.compile(self.exclude) for i, ltext in enumerate(self.lines): if re_exclude.search(ltext): self.excluded.add(i+1) # Tokenize, to find excluded suites, to find docstrings, and to find # multi-line statements. indent = 0 exclude_indent = 0 excluding = False prev_toktype = token.INDENT first_line = None tokgen = tokenize.generate_tokens(StringIO(self.text).readline) for toktype, ttext, (slineno, _), (elineno, _), ltext in tokgen: if self.show_tokens: # pragma: no cover print("%10s %5s %-20r %r" % ( tokenize.tok_name.get(toktype, toktype), nice_pair((slineno, elineno)), ttext, ltext )) if toktype == token.INDENT: indent += 1 elif toktype == token.DEDENT: indent -= 1 elif toktype == token.NAME and ttext == 'class': # Class definitions look like branches in the byte code, so # we need to exclude them. The simplest way is to note the # lines with the 'class' keyword. self.classdefs.add(slineno) elif toktype == token.OP and ttext == ':': if not excluding and elineno in self.excluded: # Start excluding a suite. We trigger off of the colon # token so that the #pragma comment will be recognized on # the same line as the colon. exclude_indent = indent excluding = True elif toktype == token.STRING and prev_toktype == token.INDENT: # Strings that are first on an indented line are docstrings. # (a trick from trace.py in the stdlib.) This works for # 99.9999% of cases. For the rest (!) see: # http://stackoverflow.com/questions/1769332/x/1769794#1769794 for i in range(slineno, elineno+1): self.docstrings.add(i) elif toktype == token.NEWLINE: if first_line is not None and elineno != first_line: # We're at the end of a line, and we've ended on a # different line than the first line of the statement, # so record a multi-line range. rng = (first_line, elineno) for l in range(first_line, elineno+1): self.multiline[l] = rng first_line = None if ttext.strip() and toktype != tokenize.COMMENT: # A non-whitespace token. if first_line is None: # The token is not whitespace, and is the first in a # statement. first_line = slineno # Check whether to end an excluded suite. if excluding and indent <= exclude_indent: excluding = False if excluding: self.excluded.add(elineno) prev_toktype = toktype # Find the starts of the executable statements. self.statement_starts.update(self.byte_parser._find_statements()) def first_line(self, line): """Return the first line number of the statement including `line`.""" rng = self.multiline.get(line) if rng: first_line = rng[0] else: first_line = line return first_line def first_lines(self, lines, ignore=None): """Map the line numbers in `lines` to the correct first line of the statement. Skip any line mentioned in `ignore`. Returns a sorted list of the first lines. """ ignore = ignore or [] lset = set() for l in lines: if l in ignore: continue new_l = self.first_line(l) if new_l not in ignore: lset.add(new_l) return sorted(lset) def parse_source(self): """Parse source text to find executable lines, excluded lines, etc. Return values are 1) a sorted list of executable line numbers, and 2) a sorted list of excluded line numbers. Reported line numbers are normalized to the first line of multi-line statements. """ self._raw_parse() excluded_lines = self.first_lines(self.excluded) ignore = excluded_lines + list(self.docstrings) lines = self.first_lines(self.statement_starts, ignore) return lines, excluded_lines def arcs(self): """Get information about the arcs available in the code. Returns a sorted list of line number pairs. Line numbers have been normalized to the first line of multiline statements. """ all_arcs = [] for l1, l2 in self.byte_parser._all_arcs(): fl1 = self.first_line(l1) fl2 = self.first_line(l2) if fl1 != fl2: all_arcs.append((fl1, fl2)) return sorted(all_arcs) arcs = expensive(arcs) def exit_counts(self): """Get a mapping from line numbers to count of exits from that line. Excluded lines are excluded. """ excluded_lines = self.first_lines(self.excluded) exit_counts = {} for l1, l2 in self.arcs(): if l1 == -1: # Don't ever report -1 as a line number continue if l1 in excluded_lines: # Don't report excluded lines as line numbers. continue if l2 in excluded_lines: # Arcs to excluded lines shouldn't count. continue if l1 not in exit_counts: exit_counts[l1] = 0 exit_counts[l1] += 1 # Class definitions have one extra exit, so remove one for each: for l in self.classdefs: # Ensure key is there: classdefs can include excluded lines. if l in exit_counts: exit_counts[l] -= 1 return exit_counts exit_counts = expensive(exit_counts) ## Opcodes that guide the ByteParser. def _opcode(name): """Return the opcode by name from the opcode module.""" return opcode.opmap[name] def _opcode_set(*names): """Return a set of opcodes by the names in `names`.""" return set([_opcode(name) for name in names]) # Opcodes that leave the code object. OPS_CODE_END = _opcode_set('RETURN_VALUE') # Opcodes that unconditionally end the code chunk. OPS_CHUNK_END = _opcode_set( 'JUMP_ABSOLUTE', 'JUMP_FORWARD', 'RETURN_VALUE', 'RAISE_VARARGS', 'BREAK_LOOP', 'CONTINUE_LOOP', ) # Opcodes that push a block on the block stack. OPS_PUSH_BLOCK = _opcode_set('SETUP_LOOP', 'SETUP_EXCEPT', 'SETUP_FINALLY') # Block types for exception handling. OPS_EXCEPT_BLOCKS = _opcode_set('SETUP_EXCEPT', 'SETUP_FINALLY') # Opcodes that pop a block from the block stack. OPS_POP_BLOCK = _opcode_set('POP_BLOCK') # Opcodes that have a jump destination, but aren't really a jump. OPS_NO_JUMP = _opcode_set('SETUP_EXCEPT', 'SETUP_FINALLY') # Individual opcodes we need below. OP_BREAK_LOOP = _opcode('BREAK_LOOP') OP_END_FINALLY = _opcode('END_FINALLY') OP_COMPARE_OP = _opcode('COMPARE_OP') COMPARE_EXCEPTION = 10 # just have to get this const from the code. OP_LOAD_CONST = _opcode('LOAD_CONST') OP_RETURN_VALUE = _opcode('RETURN_VALUE') class ByteParser(object): """Parse byte codes to understand the structure of code.""" def __init__(self, code=None, text=None, filename=None): if code: self.code = code else: if not text: assert filename, "If no code or text, need a filename" sourcef = open(filename, 'rU') text = sourcef.read() sourcef.close() try: # Python 2.3 and 2.4 don't like partial last lines, so be sure # the text ends nicely for them. self.code = compile(text + '\n', filename, "exec") except SyntaxError: _, synerr, _ = sys.exc_info() raise CoverageException( "Couldn't parse '%s' as Python source: '%s' at line %d" % (filename, synerr.msg, synerr.lineno) ) def child_parsers(self): """Iterate over all the code objects nested within this one. The iteration includes `self` as its first value. """ return map(lambda c: ByteParser(code=c), CodeObjects(self.code)) # Getting numbers from the lnotab value changed in Py3.0. if sys.hexversion >= 0x03000000: def _lnotab_increments(self, lnotab): """Return a list of ints from the lnotab bytes in 3.x""" return list(lnotab) else: def _lnotab_increments(self, lnotab): """Return a list of ints from the lnotab string in 2.x""" return [ord(c) for c in lnotab] def _bytes_lines(self): """Map byte offsets to line numbers in `code`. Uses co_lnotab described in Python/compile.c to map byte offsets to line numbers. Returns a list: [(b0, l0), (b1, l1), ...] """ # Adapted from dis.py in the standard library. byte_increments = self._lnotab_increments(self.code.co_lnotab[0::2]) line_increments = self._lnotab_increments(self.code.co_lnotab[1::2]) bytes_lines = [] last_line_num = None line_num = self.code.co_firstlineno byte_num = 0 for byte_incr, line_incr in zip(byte_increments, line_increments): if byte_incr: if line_num != last_line_num: bytes_lines.append((byte_num, line_num)) last_line_num = line_num byte_num += byte_incr line_num += line_incr if line_num != last_line_num: bytes_lines.append((byte_num, line_num)) return bytes_lines def _find_statements(self): """Find the statements in `self.code`. Return a set of line numbers that start statements. Recurses into all code objects reachable from `self.code`. """ stmts = set() for bp in self.child_parsers(): # Get all of the lineno information from this code. for _, l in bp._bytes_lines(): stmts.add(l) return stmts def _disassemble(self): # pragma: no cover """Disassemble code, for ad-hoc experimenting.""" import dis for bp in self.child_parsers(): print("\n%s: " % bp.code) dis.dis(bp.code) print("Bytes lines: %r" % bp._bytes_lines()) print("") def _split_into_chunks(self): """Split the code object into a list of `Chunk` objects. Each chunk is only entered at its first instruction, though there can be many exits from a chunk. Returns a list of `Chunk` objects. """ # The list of chunks so far, and the one we're working on. chunks = [] chunk = None bytes_lines_map = dict(self._bytes_lines()) # The block stack: loops and try blocks get pushed here for the # implicit jumps that can occur. # Each entry is a tuple: (block type, destination) block_stack = [] # Some op codes are followed by branches that should be ignored. This # is a count of how many ignores are left. ignore_branch = 0 # We have to handle the last two bytecodes specially. ult = penult = None for bc in ByteCodes(self.code.co_code): # Maybe have to start a new block if bc.offset in bytes_lines_map: if chunk: chunk.exits.add(bc.offset) chunk = Chunk(bc.offset, bytes_lines_map[bc.offset]) chunks.append(chunk) if not chunk: chunk = Chunk(bc.offset) chunks.append(chunk) # Look at the opcode if bc.jump_to >= 0 and bc.op not in OPS_NO_JUMP: if ignore_branch: # Someone earlier wanted us to ignore this branch. ignore_branch -= 1 else: # The opcode has a jump, it's an exit for this chunk. chunk.exits.add(bc.jump_to) if bc.op in OPS_CODE_END: # The opcode can exit the code object. chunk.exits.add(-1) if bc.op in OPS_PUSH_BLOCK: # The opcode adds a block to the block_stack. block_stack.append((bc.op, bc.jump_to)) if bc.op in OPS_POP_BLOCK: # The opcode pops a block from the block stack. block_stack.pop() if bc.op in OPS_CHUNK_END: # This opcode forces the end of the chunk. if bc.op == OP_BREAK_LOOP: # A break is implicit: jump where the top of the # block_stack points. chunk.exits.add(block_stack[-1][1]) chunk = None if bc.op == OP_END_FINALLY: if block_stack: # A break that goes through a finally will jump to whatever # block is on top of the stack. chunk.exits.add(block_stack[-1][1]) # For the finally clause we need to find the closest exception # block, and use its jump target as an exit. for iblock in range(len(block_stack)-1, -1, -1): if block_stack[iblock][0] in OPS_EXCEPT_BLOCKS: chunk.exits.add(block_stack[iblock][1]) break if bc.op == OP_COMPARE_OP and bc.arg == COMPARE_EXCEPTION: # This is an except clause. We want to overlook the next # branch, so that except's don't count as branches. ignore_branch += 1 penult = ult ult = bc if chunks: # The last two bytecodes could be a dummy "return None" that # shouldn't be counted as real code. Every Python code object seems # to end with a return, and a "return None" is inserted if there # isn't an explicit return in the source. if ult and penult: if penult.op == OP_LOAD_CONST and ult.op == OP_RETURN_VALUE: if self.code.co_consts[penult.arg] is None: # This is "return None", but is it dummy? A real line # would be a last chunk all by itself. if chunks[-1].byte != penult.offset: # Split the last chunk last_chunk = chunks[-1] last_chunk.exits.remove(-1) last_chunk.exits.add(penult.offset) chunk = Chunk(penult.offset) chunk.exits.add(-1) chunks.append(chunk) # Give all the chunks a length. chunks[-1].length = bc.next_offset - chunks[-1].byte for i in range(len(chunks)-1): chunks[i].length = chunks[i+1].byte - chunks[i].byte return chunks def _arcs(self): """Find the executable arcs in the code. Returns a set of pairs, (from,to). From and to are integer line numbers. If from is -1, then the arc is an entrance into the code object. If to is -1, the arc is an exit from the code object. """ chunks = self._split_into_chunks() # A map from byte offsets to chunks jumped into. byte_chunks = dict([(c.byte, c) for c in chunks]) # Build a map from byte offsets to actual lines reached. byte_lines = {-1:[-1]} bytes_to_add = set([c.byte for c in chunks]) while bytes_to_add: byte_to_add = bytes_to_add.pop() if byte_to_add in byte_lines or byte_to_add == -1: continue # Which lines does this chunk lead to? bytes_considered = set() bytes_to_consider = [byte_to_add] lines = set() while bytes_to_consider: byte = bytes_to_consider.pop() bytes_considered.add(byte) # Find chunk for byte try: ch = byte_chunks[byte] except KeyError: for ch in chunks: if ch.byte <= byte < ch.byte+ch.length: break else: # No chunk for this byte! raise Exception("Couldn't find chunk @ %d" % byte) byte_chunks[byte] = ch if ch.line: lines.add(ch.line) else: for ex in ch.exits: if ex == -1: lines.add(-1) elif ex not in bytes_considered: bytes_to_consider.append(ex) bytes_to_add.update(ch.exits) byte_lines[byte_to_add] = lines # Figure out for each chunk where the exits go. arcs = set() for chunk in chunks: if chunk.line: for ex in chunk.exits: for exit_line in byte_lines[ex]: if chunk.line != exit_line: arcs.add((chunk.line, exit_line)) for line in byte_lines[0]: arcs.add((-1, line)) return arcs def _all_chunks(self): """Returns a list of `Chunk` objects for this code and its children. See `_split_into_chunks` for details. """ chunks = [] for bp in self.child_parsers(): chunks.extend(bp._split_into_chunks()) return chunks def _all_arcs(self): """Get the set of all arcs in this code object and its children. See `_arcs` for details. """ arcs = set() for bp in self.child_parsers(): arcs.update(bp._arcs()) return arcs class Chunk(object): """A sequence of bytecodes with a single entrance. To analyze byte code, we have to divide it into chunks, sequences of byte codes such that each basic block has only one entrance, the first instruction in the block. This is almost the CS concept of `basic block`_, except that we're willing to have many exits from a chunk, and "basic block" is a more cumbersome term. .. _basic block: http://en.wikipedia.org/wiki/Basic_block An exit of -1 means the chunk can leave the code (return). """ def __init__(self, byte, line=0): self.byte = byte self.line = line self.length = 0 self.exits = set() def __repr__(self): return "<%d+%d @%d %r>" % ( self.byte, self.length, self.line, list(self.exits) ) class AdHocMain(object): # pragma: no cover """An ad-hoc main for code parsing experiments.""" def main(self, args): """A main function for trying the code from the command line.""" from optparse import OptionParser parser = OptionParser() parser.add_option( "-c", action="store_true", dest="chunks", help="Show basic block chunks" ) parser.add_option( "-d", action="store_true", dest="dis", help="Disassemble" ) parser.add_option( "-R", action="store_true", dest="recursive", help="Recurse to find source files" ) parser.add_option( "-s", action="store_true", dest="source", help="Show analyzed source" ) parser.add_option( "-t", action="store_true", dest="tokens", help="Show tokens" ) options, args = parser.parse_args() if options.recursive: if args: root = args[0] else: root = "." for root, _, _ in os.walk(root): for f in glob.glob(root + "/*.py"): self.adhoc_one_file(options, f) else: self.adhoc_one_file(options, args[0]) def adhoc_one_file(self, options, filename): """Process just one file.""" if options.dis or options.chunks: try: bp = ByteParser(filename=filename) except CoverageException: _, err, _ = sys.exc_info() print("%s" % (err,)) return if options.dis: print("Main code:") bp._disassemble() if options.chunks: chunks = bp._all_chunks() if options.recursive: print("%6d: %s" % (len(chunks), filename)) else: print("Chunks: %r" % chunks) arcs = bp._all_arcs() print("Arcs: %r" % sorted(arcs)) if options.source or options.tokens: cp = CodeParser(filename=filename, exclude=r"no\s*cover") cp.show_tokens = options.tokens cp._raw_parse() if options.source: if options.chunks: arc_width, arc_chars = self.arc_ascii_art(arcs) else: arc_width, arc_chars = 0, {} exit_counts = cp.exit_counts() for i, ltext in enumerate(cp.lines): lineno = i+1 m0 = m1 = m2 = m3 = a = ' ' if lineno in cp.statement_starts: m0 = '-' exits = exit_counts.get(lineno, 0) if exits > 1: m1 = str(exits) if lineno in cp.docstrings: m2 = '"' if lineno in cp.classdefs: m2 = 'C' if lineno in cp.excluded: m3 = 'x' a = arc_chars.get(lineno, '').ljust(arc_width) print("%4d %s%s%s%s%s %s" % (lineno, m0, m1, m2, m3, a, ltext) ) def arc_ascii_art(self, arcs): """Draw arcs as ascii art. Returns a width of characters needed to draw all the arcs, and a dictionary mapping line numbers to ascii strings to draw for that line. """ arc_chars = {} for lfrom, lto in sorted(arcs): if lfrom == -1: arc_chars[lto] = arc_chars.get(lto, '') + 'v' elif lto == -1: arc_chars[lfrom] = arc_chars.get(lfrom, '') + '^' else: if lfrom == lto-1: # Don't show obvious arcs. continue if lfrom < lto: l1, l2 = lfrom, lto else: l1, l2 = lto, lfrom w = max([len(arc_chars.get(l, '')) for l in range(l1, l2+1)]) for l in range(l1, l2+1): if l == lfrom: ch = '<' elif l == lto: ch = '>' else: ch = '|' arc_chars[l] = arc_chars.get(l, '').ljust(w) + ch arc_width = 0 if arc_chars: arc_width = max([len(a) for a in arc_chars.values()]) else: arc_width = 0 return arc_width, arc_chars if __name__ == '__main__': AdHocMain().main(sys.argv[1:]) # # eflag: FileType = Python2