Tue, 13 Mar 2018 14:54:46 +0100
Fixed some loop related coding issues detected by the extended code style checker.
# -*- coding: utf-8 -*- # # aes.py: implements AES - Advanced Encryption Standard # from the SlowAES project, http://code.google.com/p/slowaes/ # # Copyright (c) 2008 Josh Davis ( http://www.josh-davis.org ), # Alex Martelli ( http://www.aleax.it ) # # Ported from C code written by Laurent Haan # ( http://www.progressive-coding.com ) # # Licensed under the Apache License, Version 2.0 # http://www.apache.org/licenses/ # # # Ported to Python3 # # Copyright (c) 2011 - 2018 Detlev Offenbach <detlev@die-offenbachs.de> # """ Module implementing classes for encryption according Advanced Encryption Standard. """ from __future__ import unicode_literals import os import math def append_PKCS7_padding(b): """ Function to pad the given data to a multiple of 16-bytes by PKCS7 padding. @param b data to be padded (bytes) @return padded data (bytes) """ numpads = 16 - (len(b) % 16) return b + numpads * bytes(chr(numpads), encoding="ascii") def strip_PKCS7_padding(b): """ Function to strip off PKCS7 padding. @param b data to be stripped (bytes) @return stripped data (bytes) @exception ValueError data padding is invalid """ if len(b) % 16 or not b: raise ValueError( "Data of len {0} can't be PCKS7-padded".format(len(b))) numpads = b[-1] if numpads > 16: raise ValueError( "Data ending with {0} can't be PCKS7-padded".format(b[-1])) return b[:-numpads] class AES(object): """ Class implementing the Advanced Encryption Standard algorithm. """ # valid key sizes KeySize = { "SIZE_128": 16, "SIZE_192": 24, "SIZE_256": 32, } # Rijndael S-box sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16] # Rijndael Inverted S-box rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d] # Rijndael Rcon Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb] def __getSBoxValue(self, num): """ Private method to retrieve a given S-Box value. @param num position of the value (integer) @return value of the S-Box (integer) """ return self.sbox[num] def __getSBoxInvert(self, num): """ Private method to retrieve a given Inverted S-Box value. @param num position of the value (integer) @return value of the Inverted S-Box (integer) """ return self.rsbox[num] def __rotate(self, data): """ Private method performing Rijndael's key schedule rotate operation. Rotate the data word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d. @param data data of size 4 (bytearray) @return rotated data (bytearray) """ return data[1:] + data[:1] def __getRconValue(self, num): """ Private method to retrieve a given Rcon value. @param num position of the value (integer) @return Rcon value (integer) """ return self.Rcon[num] def __core(self, data, iteration): """ Private method performing the key schedule core operation. @param data data to operate on (bytearray) @param iteration iteration counter (integer) @return modified data (bytearray) """ # rotate the 32-bit word 8 bits to the left data = self.__rotate(data) # apply S-Box substitution on all 4 parts of the 32-bit word for i in range(4): data[i] = self.__getSBoxValue(data[i]) # XOR the output of the rcon operation with i to the first part # (leftmost) only data[0] = data[0] ^ self.__getRconValue(iteration) return data def __expandKey(self, key, size, expandedKeySize): """ Private method performing Rijndael's key expansion. Expands a 128, 192 or 256 bit key into a 176, 208 or 240 bit key. @param key key to be expanded (bytes or bytearray) @param size size of the key in bytes (16, 24 or 32) @param expandedKeySize size of the expanded key (integer) @return expanded key (bytearray) """ # current expanded keySize, in bytes currentSize = 0 rconIteration = 1 expandedKey = bytearray(expandedKeySize) # set the 16, 24, 32 bytes of the expanded key to the input key for j in range(size): expandedKey[j] = key[j] currentSize += size while currentSize < expandedKeySize: # assign the previous 4 bytes to the temporary value t t = expandedKey[currentSize - 4:currentSize] # every 16, 24, 32 bytes we apply the core schedule to t # and increment rconIteration afterwards if currentSize % size == 0: t = self.__core(t, rconIteration) rconIteration += 1 # For 256-bit keys, we add an extra sbox to the calculation if size == self.KeySize["SIZE_256"] and \ ((currentSize % size) == 16): for l in range(4): t[l] = self.__getSBoxValue(t[l]) # We XOR t with the four-byte block 16, 24, 32 bytes before the new # expanded key. This becomes the next four bytes in the expanded # key. for m in range(4): expandedKey[currentSize] = \ expandedKey[currentSize - size] ^ t[m] currentSize += 1 return expandedKey def __addRoundKey(self, state, roundKey): """ Private method to add (XORs) the round key to the state. @param state state to be changed (bytearray) @param roundKey key to be used for the modification (bytearray) @return modified state (bytearray) """ buf = state[:] for i in range(16): buf[i] ^= roundKey[i] return buf def __createRoundKey(self, expandedKey, roundKeyPointer): """ Private method to create a round key. @param expandedKey expanded key to be used (bytearray) @param roundKeyPointer position within the expanded key (integer) @return round key (bytearray) """ roundKey = bytearray(16) for i in range(4): for j in range(4): roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j] return roundKey def __galois_multiplication(self, a, b): """ Private method to perform a Galois multiplication of 8 bit characters a and b. @param a first factor (byte) @param b second factor (byte) @return result (byte) """ p = 0 for _counter in range(8): if b & 1: p ^= a hi_bit_set = a & 0x80 a <<= 1 # keep a 8 bit a &= 0xFF if hi_bit_set: a ^= 0x1b b >>= 1 return p def __subBytes(self, state, isInv): """ Private method to substitute all the values from the state with the value in the SBox using the state value as index for the SBox. @param state state to be worked on (bytearray) @param isInv flag indicating an inverse operation (boolean) @return modified state (bytearray) """ state = state[:] if isInv: getter = self.__getSBoxInvert else: getter = self.__getSBoxValue for i in range(16): state[i] = getter(state[i]) return state def __shiftRows(self, state, isInv): """ Private method to iterate over the 4 rows and call __shiftRow() with that row. @param state state to be worked on (bytearray) @param isInv flag indicating an inverse operation (boolean) @return modified state (bytearray) """ state = state[:] for i in range(4): state = self.__shiftRow(state, i * 4, i, isInv) return state def __shiftRow(self, state, statePointer, nbr, isInv): """ Private method to shift the bytes of a row to the left. @param state state to be worked on (bytearray) @param statePointer index into the state (integer) @param nbr number of positions to shift (integer) @param isInv flag indicating an inverse operation (boolean) @return modified state (bytearray) """ state = state[:] for _ in range(nbr): if isInv: state[statePointer:statePointer + 4] = \ state[statePointer + 3:statePointer + 4] + \ state[statePointer:statePointer + 3] else: state[statePointer:statePointer + 4] = \ state[statePointer + 1:statePointer + 4] + \ state[statePointer:statePointer + 1] return state def __mixColumns(self, state, isInv): """ Private method to perform a galois multiplication of the 4x4 matrix. @param state state to be worked on (bytearray) @param isInv flag indicating an inverse operation (boolean) @return modified state (bytearray) """ state = state[:] # iterate over the 4 columns for i in range(4): # construct one column by slicing over the 4 rows column = state[i:i + 16:4] # apply the __mixColumn on one column column = self.__mixColumn(column, isInv) # put the values back into the state state[i:i + 16:4] = column return state # galois multiplication of 1 column of the 4x4 matrix def __mixColumn(self, column, isInv): """ Private method to perform a galois multiplication of 1 column the 4x4 matrix. @param column column to be worked on (bytearray) @param isInv flag indicating an inverse operation (boolean) @return modified column (bytearray) """ column = column[:] if isInv: mult = [14, 9, 13, 11] else: mult = [2, 1, 1, 3] cpy = column[:] g = self.__galois_multiplication column[0] = ( g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ g(cpy[2], mult[2]) ^ g(cpy[1], mult[3]) ) column[1] = ( g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ g(cpy[3], mult[2]) ^ g(cpy[2], mult[3]) ) column[2] = ( g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ g(cpy[0], mult[2]) ^ g(cpy[3], mult[3]) ) column[3] = ( g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ g(cpy[1], mult[2]) ^ g(cpy[0], mult[3]) ) return column def __aes_round(self, state, roundKey): """ Private method to apply the 4 operations of the forward round in sequence. @param state state to be worked on (bytearray) @param roundKey round key to be used (bytearray) @return modified state (bytearray) """ state = self.__subBytes(state, False) state = self.__shiftRows(state, False) state = self.__mixColumns(state, False) state = self.__addRoundKey(state, roundKey) return state def __aes_invRound(self, state, roundKey): """ Private method to apply the 4 operations of the inverse round in sequence. @param state state to be worked on (bytearray) @param roundKey round key to be used (bytearray) @return modified state (bytearray) """ state = self.__shiftRows(state, True) state = self.__subBytes(state, True) state = self.__addRoundKey(state, roundKey) state = self.__mixColumns(state, True) return state def __aes_main(self, state, expandedKey, nbrRounds): """ Private method to do the AES encryption for one round. Perform the initial operations, the standard round, and the final operations of the forward AES, creating a round key for each round. @param state state to be worked on (bytearray) @param expandedKey expanded key to be used (bytearray) @param nbrRounds number of rounds to be done (integer) @return modified state (bytearray) """ state = self.__addRoundKey( state, self.__createRoundKey(expandedKey, 0)) i = 1 while i < nbrRounds: state = self.__aes_round( state, self.__createRoundKey(expandedKey, 16 * i)) i += 1 state = self.__subBytes(state, False) state = self.__shiftRows(state, False) state = self.__addRoundKey( state, self.__createRoundKey(expandedKey, 16 * nbrRounds)) return state def __aes_invMain(self, state, expandedKey, nbrRounds): """ Private method to do the inverse AES encryption for one round. Perform the initial operations, the standard round, and the final operations of the inverse AES, creating a round key for each round. @param state state to be worked on (bytearray) @param expandedKey expanded key to be used (bytearray) @param nbrRounds number of rounds to be done (integer) @return modified state (bytearray) """ state = self.__addRoundKey( state, self.__createRoundKey(expandedKey, 16 * nbrRounds)) i = nbrRounds - 1 while i > 0: state = self.__aes_invRound( state, self.__createRoundKey(expandedKey, 16 * i)) i -= 1 state = self.__shiftRows(state, True) state = self.__subBytes(state, True) state = self.__addRoundKey( state, self.__createRoundKey(expandedKey, 0)) return state def encrypt(self, iput, key, size): """ Public method to encrypt a 128 bit input block against the given key of size specified. @param iput input data (bytearray) @param key key to be used (bytes or bytearray) @param size key size (16, 24 or 32) @return encrypted data (bytes) @exception ValueError key size is invalid """ output = bytearray(16) # the number of rounds nbrRounds = 0 # the 128 bit block to encode block = bytearray(16) # set the number of rounds if size == self.KeySize["SIZE_128"]: nbrRounds = 10 elif size == self.KeySize["SIZE_192"]: nbrRounds = 12 elif size == self.KeySize["SIZE_256"]: nbrRounds = 14 else: raise ValueError("Wrong key size given ({0}).".format(size)) # the expanded keySize expandedKeySize = 16 * (nbrRounds + 1) # Set the block values, for the block: # a0,0 a0,1 a0,2 a0,3 # a1,0 a1,1 a1,2 a1,3 # a2,0 a2,1 a2,2 a2,3 # a3,0 a3,1 a3,2 a3,3 # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 # # iterate over the columns for i in range(4): # iterate over the rows for j in range(4): block[i + j * 4] = iput[i * 4 + j] # expand the key into an 176, 208, 240 bytes key # the expanded key expandedKey = self.__expandKey(key, size, expandedKeySize) # encrypt the block using the expandedKey block = self.__aes_main(block, expandedKey, nbrRounds) # unmap the block again into the output for k in range(4): # iterate over the rows for l in range(4): output[k * 4 + l] = block[k + l * 4] return bytes(output) # decrypts a 128 bit input block against the given key of size specified def decrypt(self, iput, key, size): """ Public method to decrypt a 128 bit input block against the given key of size specified. @param iput input data (bytearray) @param key key to be used (bytes or bytearray) @param size key size (16, 24 or 32) @return decrypted data (bytes) @exception ValueError key size is invalid """ output = bytearray(16) # the number of rounds nbrRounds = 0 # the 128 bit block to decode block = bytearray(16) # set the number of rounds if size == self.KeySize["SIZE_128"]: nbrRounds = 10 elif size == self.KeySize["SIZE_192"]: nbrRounds = 12 elif size == self.KeySize["SIZE_256"]: nbrRounds = 14 else: raise ValueError("Wrong key size given ({0}).".format(size)) # the expanded keySize expandedKeySize = 16 * (nbrRounds + 1) # Set the block values, for the block: # a0,0 a0,1 a0,2 a0,3 # a1,0 a1,1 a1,2 a1,3 # a2,0 a2,1 a2,2 a2,3 # a3,0 a3,1 a3,2 a3,3 # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3 # iterate over the columns for i in range(4): # iterate over the rows for j in range(4): block[i + j * 4] = iput[i * 4 + j] # expand the key into an 176, 208, 240 bytes key expandedKey = self.__expandKey(key, size, expandedKeySize) # decrypt the block using the expandedKey block = self.__aes_invMain(block, expandedKey, nbrRounds) # unmap the block again into the output for k in range(4): # iterate over the rows for l in range(4): output[k * 4 + l] = block[k + l * 4] return output class AESModeOfOperation(object): """ Class implementing the different AES mode of operations. """ aes = AES() # structure of supported modes of operation ModeOfOperation = { "OFB": 0, "CFB": 1, "CBC": 2, } def __extractBytes(self, inputData, start, end, mode): """ Private method to extract a range of bytes from the input. @param inputData input data (bytes) @param start start index (integer) @param end end index (integer) @param mode mode of operation (0, 1, 2) @return extracted bytes (bytearray) """ if end - start > 16: end = start + 16 if mode == self.ModeOfOperation["CBC"]: ar = bytearray(16) else: ar = bytearray() i = start j = 0 while len(ar) < end - start: ar.append(0) while i < end: ar[j] = inputData[i] j += 1 i += 1 return ar def encrypt(self, inputData, mode, key, size, IV): """ Public method to perform the encryption operation. @param inputData data to be encrypted (bytes) @param mode mode of operation (0, 1 or 2) @param key key to be used (bytes) @param size length of the key (16, 24 or 32) @param IV initialisation vector (bytearray) @return tuple with mode of operation, length of the input data and the encrypted data (integer, integer, bytes) @exception ValueError key size is invalid or decrypted data is invalid """ if len(key) % size: raise ValueError("Illegal size ({0}) for key '{1}'.".format( size, key)) if len(IV) % 16: raise ValueError("IV is not a multiple of 16.") # the AES input/output iput = bytearray(16) output = bytearray() ciphertext = bytearray(16) # the output cipher string cipherOut = bytearray() # char firstRound firstRound = True if inputData: for j in range(int(math.ceil(float(len(inputData)) / 16))): start = j * 16 end = j * 16 + 16 if end > len(inputData): end = len(inputData) plaintext = self.__extractBytes(inputData, start, end, mode) if mode == self.ModeOfOperation["CFB"]: if firstRound: output = self.aes.encrypt(IV, key, size) firstRound = False else: output = self.aes.encrypt(iput, key, size) for i in range(16): if len(plaintext) - 1 < i: ciphertext[i] = 0 ^ output[i] elif len(output) - 1 < i: ciphertext[i] = plaintext[i] ^ 0 elif len(plaintext) - 1 < i and len(output) < i: ciphertext[i] = 0 ^ 0 else: ciphertext[i] = plaintext[i] ^ output[i] for k in range(end - start): cipherOut.append(ciphertext[k]) iput = ciphertext elif mode == self.ModeOfOperation["OFB"]: if firstRound: output = self.aes.encrypt(IV, key, size) firstRound = False else: output = self.aes.encrypt(iput, key, size) for i in range(16): if len(plaintext) - 1 < i: ciphertext[i] = 0 ^ output[i] elif len(output) - 1 < i: ciphertext[i] = plaintext[i] ^ 0 elif len(plaintext) - 1 < i and len(output) < i: ciphertext[i] = 0 ^ 0 else: ciphertext[i] = plaintext[i] ^ output[i] for k in range(end - start): cipherOut.append(ciphertext[k]) iput = output elif mode == self.ModeOfOperation["CBC"]: for i in range(16): if firstRound: iput[i] = plaintext[i] ^ IV[i] else: iput[i] = plaintext[i] ^ ciphertext[i] firstRound = False ciphertext = self.aes.encrypt(iput, key, size) # always 16 bytes because of the padding for CBC for k in range(16): cipherOut.append(ciphertext[k]) return mode, len(inputData), bytes(cipherOut) # Mode of Operation Decryption # cipherIn - Encrypted String # originalsize - The unencrypted string length - required for CBC # mode - mode of type modeOfOperation # key - a number array of the bit length size # size - the bit length of the key # IV - the 128 bit number array Initilization Vector def decrypt(self, cipherIn, originalsize, mode, key, size, IV): """ Public method to perform the decryption operation. @param cipherIn data to be decrypted (bytes) @param originalsize unencrypted string length (required for CBC) (integer) @param mode mode of operation (0, 1 or 2) @param key key to be used (bytes) @param size length of the key (16, 24 or 32) @param IV initialisation vector (bytearray) @return decrypted data (bytes) @exception ValueError key size is invalid or decrypted data is invalid """ if len(key) % size: raise ValueError("Illegal size ({0}) for key '{1}'.".format( size, key)) if len(IV) % 16: raise ValueError("IV is not a multiple of 16.") # the AES input/output ciphertext = bytearray() iput = bytearray() output = bytearray() plaintext = bytearray(16) # the output bytes bytesOut = bytearray() # char firstRound firstRound = True if cipherIn is not None: for j in range(int(math.ceil(float(len(cipherIn)) / 16))): start = j * 16 end = j * 16 + 16 if j * 16 + 16 > len(cipherIn): end = len(cipherIn) ciphertext = cipherIn[start:end] if mode == self.ModeOfOperation["CFB"]: if firstRound: output = self.aes.encrypt(IV, key, size) firstRound = False else: output = self.aes.encrypt(iput, key, size) for i in range(16): if len(output) - 1 < i: plaintext[i] = 0 ^ ciphertext[i] elif len(ciphertext) - 1 < i: plaintext[i] = output[i] ^ 0 elif len(output) - 1 < i and len(ciphertext) < i: plaintext[i] = 0 ^ 0 else: plaintext[i] = output[i] ^ ciphertext[i] for k in range(end - start): bytesOut.append(plaintext[k]) iput = ciphertext elif mode == self.ModeOfOperation["OFB"]: if firstRound: output = self.aes.encrypt(IV, key, size) firstRound = False else: output = self.aes.encrypt(iput, key, size) for i in range(16): if len(output) - 1 < i: plaintext[i] = 0 ^ ciphertext[i] elif len(ciphertext) - 1 < i: plaintext[i] = output[i] ^ 0 elif len(output) - 1 < i and len(ciphertext) < i: plaintext[i] = 0 ^ 0 else: plaintext[i] = output[i] ^ ciphertext[i] for k in range(end - start): bytesOut.append(plaintext[k]) iput = output elif mode == self.ModeOfOperation["CBC"]: output = self.aes.decrypt(ciphertext, key, size) for i in range(16): if firstRound: plaintext[i] = IV[i] ^ output[i] else: plaintext[i] = iput[i] ^ output[i] firstRound = False if originalsize is not None and originalsize < end: for k in range(originalsize - start): bytesOut.append(plaintext[k]) else: for k in range(end - start): bytesOut.append(plaintext[k]) iput = ciphertext return bytes(bytesOut) def encryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]): """ Module function to encrypt the given data with the given key. @param key key to be used for encryption (bytes) @param data data to be encrypted (bytes) @param mode mode of operations (0, 1 or 2) @return encrypted data prepended with the initialization vector (bytes) """ key = bytearray(key) if mode == AESModeOfOperation.ModeOfOperation["CBC"]: data = append_PKCS7_padding(data) keysize = len(key) assert keysize in AES.KeySize.values(), \ 'invalid key size: {0}'.format(keysize) # create a new iv using random data iv = bytearray([i for i in os.urandom(16)]) moo = AESModeOfOperation() mode, length, ciph = moo.encrypt(data, mode, key, keysize, iv) # With padding, the original length does not need to be known. It's a bad # idea to store the original message length. # prepend the iv. return bytes(iv) + bytes(ciph) def decryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]): """ Module function to decrypt the given data with the given key. @param key key to be used for decryption (bytes) @param data data to be decrypted (with initialization vector prepended) (bytes) @param mode mode of operations (0, 1 or 2) @return decrypted data (bytes) """ key = bytearray(key) keysize = len(key) assert keysize in AES.KeySize.values(), \ 'invalid key size: {0}'.format(keysize) # iv is first 16 bytes iv = bytearray(data[:16]) data = bytearray(data[16:]) moo = AESModeOfOperation() decr = moo.decrypt(data, None, mode, key, keysize, iv) if mode == AESModeOfOperation.ModeOfOperation["CBC"]: decr = strip_PKCS7_padding(decr) return bytes(decr)