Utilities/crypto/py3AES.py

changeset 1127
b1802ebe0066
child 1509
c0b5e693b0eb
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Utilities/crypto/py3AES.py	Sun Jun 19 15:19:46 2011 +0200
@@ -0,0 +1,835 @@
+#!/usr/bin/python3
+#
+# aes.py: implements AES - Advanced Encryption Standard
+# from the SlowAES project, http://code.google.com/p/slowaes/
+#
+# Copyright (c) 2008    Josh Davis ( http://www.josh-davis.org ),
+#           Alex Martelli ( http://www.aleax.it )
+#
+# Ported from C code written by Laurent Haan ( http://www.progressive-coding.com )
+#
+# Licensed under the Apache License, Version 2.0
+# http://www.apache.org/licenses/
+#
+
+#
+# Ported to Python3
+#
+# Copyright (c) 2011 Detlev Offenbach <detlev@die-offenbachs.de>
+#
+
+"""
+Module implementing classes for encryption according
+Advanced Encryption Standard.
+"""
+
+import os
+import math
+
+
+def append_PKCS7_padding(b):
+    """
+    Function to pad the given data to a multiple of 16-bytes by PKCS7 padding.
+    
+    @param b data to be padded (bytes)
+    @return padded data (bytes)
+    """
+    numpads = 16 - (len(b) % 16)
+    return b + numpads * bytes(chr(numpads), encoding="ascii")
+
+
+def strip_PKCS7_padding(b):
+    """
+    Function to strip off PKCS7 padding.
+    
+    @param b data to be stripped (bytes)
+    @return stripped data (bytes)
+    """
+    if len(b) % 16 or not b:
+        raise ValueError("Data of len {0} can't be PCKS7-padded".format(len(b)))
+    numpads = b[-1]
+    if numpads > 16:
+        raise ValueError("Data ending with {0} can't be PCKS7-padded".format(b[-1]))
+    return b[:-numpads]
+
+
+class AES(object):
+    """
+    Class implementing the Advanced Encryption Standard algorithm.
+    """
+    # valid key sizes
+    KeySize = {
+        "SIZE_128": 16,
+        "SIZE_192": 24,
+        "SIZE_256": 32,
+    }
+
+    # Rijndael S-box
+    sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
+            0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
+            0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
+            0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
+            0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
+            0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
+            0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
+            0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
+            0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
+            0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
+            0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
+            0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
+            0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
+            0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
+            0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
+            0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
+            0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
+            0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
+            0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
+            0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
+            0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
+            0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
+            0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
+            0x54, 0xbb, 0x16]
+
+    # Rijndael Inverted S-box
+    rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
+             0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
+             0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54,
+             0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
+             0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
+             0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8,
+             0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
+             0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
+             0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab,
+             0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
+             0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
+             0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
+             0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
+             0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
+             0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d,
+             0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
+             0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
+             0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
+             0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
+             0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
+             0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
+             0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b,
+             0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
+             0x21, 0x0c, 0x7d]
+
+    # Rijndael Rcon
+    Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
+            0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
+            0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
+            0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
+            0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
+            0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
+            0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
+            0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
+            0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
+            0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
+            0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
+            0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
+            0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
+            0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
+            0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
+            0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
+            0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
+            0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
+            0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
+            0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
+            0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
+            0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
+            0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
+            0xe8, 0xcb]
+
+    def __getSBoxValue(self, num):
+        """
+        Private method to retrieve a given S-Box value.
+        
+        @param num position of the value (integer)
+        @return value of the S-Box (integer)
+        """
+        return self.sbox[num]
+
+    def __getSBoxInvert(self, num):
+        """
+        Private method to retrieve a given Inverted S-Box value.
+        
+        @param num position of the value (integer)
+        @return value of the Inverted S-Box (integer)
+        """
+        return self.rsbox[num]
+
+    def __rotate(self, data):
+        """
+        Private method performing Rijndael's key schedule rotate operation.
+
+        Rotate the data word eight bits to the left: eg, rotate(1d2c3a4f) == 2c3a4f1d.
+        
+        @param data data of size 4 (bytearray)
+        """
+        return data[1:] + data[:1]
+
+    def __getRconValue(self, num):
+        """
+        Private method to retrieve a given Rcon value.
+        
+        @param num position of the value (integer)
+        @return Rcon value (integer)
+        """
+        return self.Rcon[num]
+
+    def __core(self, data, iteration):
+        """
+        Private method performing the key schedule core operation.
+        
+        @param data data to operate on (bytearray)
+        @param iteration iteration counter (integer)
+        @return modified data (bytearray)
+        """
+        # rotate the 32-bit word 8 bits to the left
+        data = self.__rotate(data)
+        # apply S-Box substitution on all 4 parts of the 32-bit word
+        for i in range(4):
+            data[i] = self.__getSBoxValue(data[i])
+        # XOR the output of the rcon operation with i to the first part
+        # (leftmost) only
+        data[0] = data[0] ^ self.__getRconValue(iteration)
+        return data
+
+    def __expandKey(self, key, size, expandedKeySize):
+        """
+        Private method performing Rijndael's key expansion.
+
+        Expands a 128, 192 or 256 bit key into a 176, 208 or 240 bit key.
+        
+        @param key key to be expanded (bytes or bytearray)
+        @param size size of the key in bytes (16, 24 or 32)
+        @param expandedKeySize size of the expanded key (integer)
+        @return expanded key (bytearray)
+        """
+        # current expanded keySize, in bytes
+        currentSize = 0
+        rconIteration = 1
+        expandedKey = bytearray(expandedKeySize)
+
+        # set the 16, 24, 32 bytes of the expanded key to the input key
+        for j in range(size):
+            expandedKey[j] = key[j]
+        currentSize += size
+
+        while currentSize < expandedKeySize:
+            # assign the previous 4 bytes to the temporary value t
+            t = expandedKey[currentSize - 4:currentSize]
+
+            # every 16, 24, 32 bytes we apply the core schedule to t
+            # and increment rconIteration afterwards
+            if currentSize % size == 0:
+                t = self.__core(t, rconIteration)
+                rconIteration += 1
+            # For 256-bit keys, we add an extra sbox to the calculation
+            if size == self.KeySize["SIZE_256"] and ((currentSize % size) == 16):
+                for l in range(4):
+                    t[l] = self.__getSBoxValue(t[l])
+
+            # We XOR t with the four-byte block 16, 24, 32 bytes before the new
+            # expanded key. This becomes the next four bytes in the expanded key.
+            for m in range(4):
+                expandedKey[currentSize] = \
+                    expandedKey[currentSize - size] ^ t[m]
+                currentSize += 1
+
+        return expandedKey
+
+    def __addRoundKey(self, state, roundKey):
+        """
+        Private method to add (XORs) the round key to the state.
+        
+        @param state state to be changed (bytearray)
+        @param roundKey key to be used for the modification (bytearray)
+        @return modified state (bytearray)
+        """
+        buf = state[:]
+        for i in range(16):
+            buf[i] ^= roundKey[i]
+        return buf
+
+    def __createRoundKey(self, expandedKey, roundKeyPointer):
+        """
+        Private method to create a round key.
+        
+        @param expandedKey expanded key to be used (bytearray)
+        @param roundKeyPointer position within the expanded key (integer)
+        @return round key (bytearray)
+        """
+        roundKey = bytearray(16)
+        for i in range(4):
+            for j in range(4):
+                roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j]
+        return roundKey
+
+    def __galois_multiplication(self, a, b):
+        """
+        Private method to perform a Galois multiplication of 8 bit characters a and b.
+        
+        @param a first factor (byte)
+        @param b second factor (byte)
+        @return result (byte)
+        """
+        p = 0
+        for counter in range(8):
+            if b & 1:
+                p ^= a
+            hi_bit_set = a & 0x80
+            a <<= 1
+            # keep a 8 bit
+            a &= 0xFF
+            if hi_bit_set:
+                a ^= 0x1b
+            b >>= 1
+        return p
+
+    def __subBytes(self, state, isInv):
+        """
+        Private method to substitute all the values from the state with the value in
+        the SBox using the state value as index for the SBox.
+        
+        @param state state to be worked on (bytearray)
+        @param isInv flag indicating an inverse operation (boolean)
+        @return modified state (bytearray)
+        """
+        state = state[:]
+        if isInv:
+            getter = self.__getSBoxInvert
+        else:
+            getter = self.__getSBoxValue
+        for i in range(16):
+            state[i] = getter(state[i])
+        return state
+
+    def __shiftRows(self, state, isInv):
+        """
+        Private method to iterate over the 4 rows and call __shiftRow() with
+        that row.
+        
+        @param state state to be worked on (bytearray)
+        @param isInv flag indicating an inverse operation (boolean)
+        @return modified state (bytearray)
+        """
+        state = state[:]
+        for i in range(4):
+            state = self.__shiftRow(state, i * 4, i, isInv)
+        return state
+
+    def __shiftRow(self, state, statePointer, nbr, isInv):
+        """
+        Private method to shift the bytes of a row to the left.
+        
+        @param state state to be worked on (bytearray)
+        @param statePointer index into the state (integer)
+        @param nbr number of positions to shift (integer)
+        @param isInv flag indicating an inverse operation (boolean)
+        @return modified state (bytearray)
+        """
+        state = state[:]
+        for i in range(nbr):
+            if isInv:
+                state[statePointer:statePointer + 4] = \
+                        state[statePointer + 3:statePointer + 4] + \
+                        state[statePointer:statePointer + 3]
+            else:
+                state[statePointer:statePointer + 4] = \
+                        state[statePointer + 1:statePointer + 4] + \
+                        state[statePointer:statePointer + 1]
+        return state
+
+    def __mixColumns(self, state, isInv):
+        """
+        Private method to perform a galois multiplication of the 4x4 matrix.
+        
+        @param state state to be worked on (bytearray)
+        @param isInv flag indicating an inverse operation (boolean)
+        @return modified state (bytearray)
+        """
+        state = state[:]
+        # iterate over the 4 columns
+        for i in range(4):
+            # construct one column by slicing over the 4 rows
+            column = state[i:i + 16:4]
+            # apply the __mixColumn on one column
+            column = self.__mixColumn(column, isInv)
+            # put the values back into the state
+            state[i:i + 16:4] = column
+
+        return state
+
+    # galois multiplication of 1 column of the 4x4 matrix
+    def __mixColumn(self, column, isInv):
+        """
+        Private method to perform a galois multiplication of 1 column the 4x4 matrix.
+        
+        @param column column to be worked on (bytearray)
+        @param isInv flag indicating an inverse operation (boolean)
+        @return modified column (bytearray)
+        """
+        column = column[:]
+        if isInv:
+            mult = [14, 9, 13, 11]
+        else:
+            mult = [2, 1, 1, 3]
+        cpy = column[:]
+        g = self.__galois_multiplication
+
+        column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
+                    g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
+        column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
+                    g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
+        column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
+                    g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
+        column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
+                    g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
+        return column
+
+    def __aes_round(self, state, roundKey):
+        """
+        Private method to apply the 4 operations of the forward round in sequence.
+        
+        @param state state to be worked on (bytearray)
+        @param roundKey round key to be used (bytearray)
+        @return modified state (bytearray)
+        """
+        state = self.__subBytes(state, False)
+        state = self.__shiftRows(state, False)
+        state = self.__mixColumns(state, False)
+        state = self.__addRoundKey(state, roundKey)
+        return state
+
+    def __aes_invRound(self, state, roundKey):
+        """
+        Private method to apply the 4 operations of the inverse round in sequence.
+        
+        @param state state to be worked on (bytearray)
+        @param roundKey round key to be used (bytearray)
+        @return modified state (bytearray)
+        """
+        state = self.__shiftRows(state, True)
+        state = self.__subBytes(state, True)
+        state = self.__addRoundKey(state, roundKey)
+        state = self.__mixColumns(state, True)
+        return state
+
+    def __aes_main(self, state, expandedKey, nbrRounds):
+        """
+        Private method to perform the initial operations, the standard round, and the
+        final operations of the forward AES, creating a round key for each round.
+        
+        @param state state to be worked on (bytearray)
+        @param expandedKey expanded key to be used (bytearray)
+        @param nbrRounds number of rounds to be done (integer)
+        @return modified state (bytearray)
+        """
+        state = self.__addRoundKey(state, self.__createRoundKey(expandedKey, 0))
+        i = 1
+        while i < nbrRounds:
+            state = self.__aes_round(
+                state, self.__createRoundKey(expandedKey, 16 * i))
+            i += 1
+        state = self.__subBytes(state, False)
+        state = self.__shiftRows(state, False)
+        state = self.__addRoundKey(
+            state, self.__createRoundKey(expandedKey, 16 * nbrRounds))
+        return state
+
+    def __aes_invMain(self, state, expandedKey, nbrRounds):
+        """
+        Private method to perform the initial operations, the standard round, and the
+        final operations of the inverse AES, creating a round key for each round.
+        
+        @param state state to be worked on (bytearray)
+        @param expandedKey expanded key to be used (bytearray)
+        @param nbrRounds number of rounds to be done (integer)
+        @return modified state (bytearray)
+        """
+        state = self.__addRoundKey(
+            state, self.__createRoundKey(expandedKey, 16 * nbrRounds))
+        i = nbrRounds - 1
+        while i > 0:
+            state = self.__aes_invRound(
+                state, self.__createRoundKey(expandedKey, 16 * i))
+            i -= 1
+        state = self.__shiftRows(state, True)
+        state = self.__subBytes(state, True)
+        state = self.__addRoundKey(state, self.__createRoundKey(expandedKey, 0))
+        return state
+
+    def encrypt(self, iput, key, size):
+        """
+        Public method to encrypt a 128 bit input block against the given key of size
+        specified.
+        
+        @param iput input data (bytearray)
+        @param key key to be used (bytes or bytearray)
+        @param size key size (16, 24 or 32)
+        @return encrypted data (bytes)
+        """
+        output = bytearray(16)
+        # the number of rounds
+        nbrRounds = 0
+        # the 128 bit block to encode
+        block = bytearray(16)
+        # set the number of rounds
+        if size == self.KeySize["SIZE_128"]:
+            nbrRounds = 10
+        elif size == self.KeySize["SIZE_192"]:
+            nbrRounds = 12
+        elif size == self.KeySize["SIZE_256"]:
+            nbrRounds = 14
+        else:
+            raise ValueError("Wrong key size given ({0}).".format(size))
+
+        # the expanded keySize
+        expandedKeySize = 16 * (nbrRounds + 1)
+
+        # Set the block values, for the block:
+        # a0,0 a0,1 a0,2 a0,3
+        # a1,0 a1,1 a1,2 a1,3
+        # a2,0 a2,1 a2,2 a2,3
+        # a3,0 a3,1 a3,2 a3,3
+        # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
+        #
+        # iterate over the columns
+        for i in range(4):
+            # iterate over the rows
+            for j in range(4):
+                block[i + j * 4] = iput[i * 4 + j]
+
+        # expand the key into an 176, 208, 240 bytes key
+        # the expanded key
+        expandedKey = self.__expandKey(key, size, expandedKeySize)
+
+        # encrypt the block using the expandedKey
+        block = self.__aes_main(block, expandedKey, nbrRounds)
+
+        # unmap the block again into the output
+        for k in range(4):
+            # iterate over the rows
+            for l in range(4):
+                output[k * 4 + l] = block[k + l * 4]
+        return bytes(output)
+
+    # decrypts a 128 bit input block against the given key of size specified
+    def decrypt(self, iput, key, size):
+        """
+        Public method to decrypt a 128 bit input block against the given key of size
+        specified.
+        
+        @param iput input data (bytearray)
+        @param key key to be used (bytes or bytearray)
+        @param size key size (16, 24 or 32)
+        @return decrypted data (bytes)
+        """
+        output = bytearray(16)
+        # the number of rounds
+        nbrRounds = 0
+        # the 128 bit block to decode
+        block = bytearray(16)
+        # set the number of rounds
+        if size == self.KeySize["SIZE_128"]:
+            nbrRounds = 10
+        elif size == self.KeySize["SIZE_192"]:
+            nbrRounds = 12
+        elif size == self.KeySize["SIZE_256"]:
+            nbrRounds = 14
+        else:
+            raise ValueError("Wrong key size given ({0}).".format(size))
+
+        # the expanded keySize
+        expandedKeySize = 16 * (nbrRounds + 1)
+
+        # Set the block values, for the block:
+        # a0,0 a0,1 a0,2 a0,3
+        # a1,0 a1,1 a1,2 a1,3
+        # a2,0 a2,1 a2,2 a2,3
+        # a3,0 a3,1 a3,2 a3,3
+        # the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
+
+        # iterate over the columns
+        for i in range(4):
+            # iterate over the rows
+            for j in range(4):
+                block[i + j * 4] = iput[i * 4 + j]
+        # expand the key into an 176, 208, 240 bytes key
+        expandedKey = self.__expandKey(key, size, expandedKeySize)
+        # decrypt the block using the expandedKey
+        block = self.__aes_invMain(block, expandedKey, nbrRounds)
+        # unmap the block again into the output
+        for k in range(4):
+            # iterate over the rows
+            for l in range(4):
+                output[k * 4 + l] = block[k + l * 4]
+        return output
+
+
+class AESModeOfOperation(object):
+    """
+    Class implementing the different AES mode of operations.
+    """
+    aes = AES()
+
+    # structure of supported modes of operation
+    ModeOfOperation = {
+        "OFB": 0,
+        "CFB": 1,
+        "CBC": 2,
+    }
+
+    def __extractBytes(self, input, start, end, mode):
+        """
+        Private method to extract a range of bytes from the input.
+        
+        @param input input data (bytes)
+        @param start start index (integer)
+        @param end end index (integer)
+        @param mode mode of operation (0, 1, 2)
+        @return extracted bytes (bytearray)
+        """
+        if end - start > 16:
+            end = start + 16
+        if mode == self.ModeOfOperation["CBC"]:
+            ar = bytearray(16)
+        else:
+            ar = bytearray()
+
+        i = start
+        j = 0
+        while len(ar) < end - start:
+            ar.append(0)
+        while i < end:
+            ar[j] = input[i]
+            j += 1
+            i += 1
+        return ar
+
+    def encrypt(self, input, mode, key, size, IV):
+        """
+        Public method to perform the encryption operation.
+        
+        @param input data to be encrypted (bytes)
+        @param mode mode of operation (0, 1 or 2)
+        @param key key to be used (bytes)
+        @param size length of the key (integer)
+        @param IV initialisation vector (bytearray)
+        @return tuple with mode of operation, length of the input and
+            the encrypted data (integer, integer, bytes)
+        """
+        if len(key) % size:
+            raise ValueError("Illegal size ({0}) for key '{1}'.".format(
+                size, key))
+        if len(IV) % 16:
+            raise ValueError("IV is not a multiple of 16.")
+        # the AES input/output
+        iput = bytearray(16)
+        output = bytearray()
+        ciphertext = bytearray(16)
+        # the output cipher string
+        cipherOut = bytearray()
+        # char firstRound
+        firstRound = True
+        if input:
+            for j in range(int(math.ceil(float(len(input)) / 16))):
+                start = j * 16
+                end = j * 16 + 16
+                if  end > len(input):
+                    end = len(input)
+                plaintext = self.__extractBytes(input, start, end, mode)
+                # print 'PT@%s:%s' % (j, plaintext)
+                if mode == self.ModeOfOperation["CFB"]:
+                    if firstRound:
+                        output = self.aes.encrypt(IV, key, size)
+                        firstRound = False
+                    else:
+                        output = self.aes.encrypt(iput, key, size)
+                    for i in range(16):
+                        if len(plaintext) - 1 < i:
+                            ciphertext[i] = 0 ^ output[i]
+                        elif len(output) - 1 < i:
+                            ciphertext[i] = plaintext[i] ^ 0
+                        elif len(plaintext) - 1 < i and len(output) < i:
+                            ciphertext[i] = 0 ^ 0
+                        else:
+                            ciphertext[i] = plaintext[i] ^ output[i]
+                    for k in range(end - start):
+                        cipherOut.append(ciphertext[k])
+                    iput = ciphertext
+                elif mode == self.ModeOfOperation["OFB"]:
+                    if firstRound:
+                        output = self.aes.encrypt(IV, key, size)
+                        firstRound = False
+                    else:
+                        output = self.aes.encrypt(iput, key, size)
+                    for i in range(16):
+                        if len(plaintext) - 1 < i:
+                            ciphertext[i] = 0 ^ output[i]
+                        elif len(output) - 1 < i:
+                            ciphertext[i] = plaintext[i] ^ 0
+                        elif len(plaintext) - 1 < i and len(output) < i:
+                            ciphertext[i] = 0 ^ 0
+                        else:
+                            ciphertext[i] = plaintext[i] ^ output[i]
+                    for k in range(end - start):
+                        cipherOut.append(ciphertext[k])
+                    iput = output
+                elif mode == self.ModeOfOperation["CBC"]:
+                    for i in range(16):
+                        if firstRound:
+                            iput[i] = plaintext[i] ^ IV[i]
+                        else:
+                            iput[i] = plaintext[i] ^ ciphertext[i]
+                    # print 'IP@%s:%s' % (j, iput)
+                    firstRound = False
+                    ciphertext = self.aes.encrypt(iput, key, size)
+                    # always 16 bytes because of the padding for CBC
+                    for k in range(16):
+                        cipherOut.append(ciphertext[k])
+        return mode, len(input), bytes(cipherOut)
+
+    # Mode of Operation Decryption
+    # cipherIn - Encrypted String
+    # originalsize - The unencrypted string length - required for CBC
+    # mode - mode of type modeOfOperation
+    # key - a number array of the bit length size
+    # size - the bit length of the key
+    # IV - the 128 bit number array Initilization Vector
+    def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
+        """
+        Public method to perform the decryption operation.
+        
+        @param input data to be encrypted (bytes)
+        @param originalsize unencrypted string length (required for CBC)
+            (integer)
+        @param mode mode of operation (0, 1 or 2)
+        @param key key to be used (bytes)
+        @param size length of the key (integer)
+        @param IV initialisation vector (bytearray)
+        @return decrypted data (bytes)
+        """
+        if len(key) % size:
+            raise ValueError("Illegal size ({0}) for key '{1}'.".format(
+                size, key))
+        if len(IV) % 16:
+            raise ValueError("IV is not a multiple of 16.")
+        # the AES input/output
+        ciphertext = bytearray()
+        iput = bytearray()
+        output = bytearray()
+        plaintext = bytearray(16)
+        # the output bytes
+        bytesOut = bytearray()
+        # char firstRound
+        firstRound = True
+        if cipherIn != None:
+            for j in range(int(math.ceil(float(len(cipherIn)) / 16))):
+                start = j * 16
+                end = j * 16 + 16
+                if j * 16 + 16 > len(cipherIn):
+                    end = len(cipherIn)
+                ciphertext = cipherIn[start:end]
+                if mode == self.ModeOfOperation["CFB"]:
+                    if firstRound:
+                        output = self.aes.encrypt(IV, key, size)
+                        firstRound = False
+                    else:
+                        output = self.aes.encrypt(iput, key, size)
+                    for i in range(16):
+                        if len(output) - 1 < i:
+                            plaintext[i] = 0 ^ ciphertext[i]
+                        elif len(ciphertext) - 1 < i:
+                            plaintext[i] = output[i] ^ 0
+                        elif len(output) - 1 < i and len(ciphertext) < i:
+                            plaintext[i] = 0 ^ 0
+                        else:
+                            plaintext[i] = output[i] ^ ciphertext[i]
+                    for k in range(end - start):
+                        bytesOut.append(plaintext[k])
+                    iput = ciphertext
+                elif mode == self.ModeOfOperation["OFB"]:
+                    if firstRound:
+                        output = self.aes.encrypt(IV, key, size)
+                        firstRound = False
+                    else:
+                        output = self.aes.encrypt(iput, key, size)
+                    for i in range(16):
+                        if len(output) - 1 < i:
+                            plaintext[i] = 0 ^ ciphertext[i]
+                        elif len(ciphertext) - 1 < i:
+                            plaintext[i] = output[i] ^ 0
+                        elif len(output) - 1 < i and len(ciphertext) < i:
+                            plaintext[i] = 0 ^ 0
+                        else:
+                            plaintext[i] = output[i] ^ ciphertext[i]
+                    for k in range(end - start):
+                        bytesOut.append(plaintext[k])
+                    iput = output
+                elif mode == self.ModeOfOperation["CBC"]:
+                    output = self.aes.decrypt(ciphertext, key, size)
+                    for i in range(16):
+                        if firstRound:
+                            plaintext[i] = IV[i] ^ output[i]
+                        else:
+                            plaintext[i] = iput[i] ^ output[i]
+                    firstRound = False
+                    if originalsize is not None and originalsize < end:
+                        for k in range(originalsize - start):
+                            bytesOut.append(plaintext[k])
+                    else:
+                        for k in range(end - start):
+                            bytesOut.append(plaintext[k])
+                    iput = ciphertext
+        return bytes(bytesOut)
+
+
+def encryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]):
+    """
+    Module function to encrypt the given data with the given key.
+    
+    @param key key to be used for encryption (bytes)
+    @param data data to be encrypted (bytes)
+    @param mode mode of operations (0, 1 or 2)
+    @return encrypted data prepended with the initialization vector (bytes)
+    """
+    key = bytearray(key)
+    if mode == AESModeOfOperation.ModeOfOperation["CBC"]:
+        data = append_PKCS7_padding(data)
+    keysize = len(key)
+    assert keysize in AES.KeySize.values(), 'invalid key size: {0}'.format(keysize)
+    # create a new iv using random data
+    iv = bytearray([i for i in os.urandom(16)])
+    moo = AESModeOfOperation()
+    mode, length, ciph = moo.encrypt(data, mode, key, keysize, iv)
+    # With padding, the original length does not need to be known. It's a bad
+    # idea to store the original message length.
+    # prepend the iv.
+    return bytes(iv) + bytes(ciph)
+
+
+def decryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]):
+    """
+    Module function to decrypt the given data with the given key.
+    
+    @param key key to be used for decryption (bytes)
+    @param data data to be decrypted (with initialization vector prepended) (bytes)
+    @param mode mode of operations (0, 1 or 2)
+    @return decrypted data (bytes)
+    @exception ValueError key size is invalid or decrypted data is invalid
+    """
+    key = bytearray(key)
+    keysize = len(key)
+    assert keysize in AES.KeySize.values(), 'invalid key size: %s' % keysize
+    # iv is first 16 bytes
+    iv = bytearray(data[:16])
+    data = bytearray(data[16:])
+    moo = AESModeOfOperation()
+    decr = moo.decrypt(data, None, mode, key, keysize, iv)
+    if mode == AESModeOfOperation.ModeOfOperation["CBC"]:
+        decr = strip_PKCS7_padding(decr)
+    return bytes(decr)

eric ide

mercurial