--- a/ThirdParty/CharDet/chardet/sbcharsetprober.py Tue Apr 25 18:36:38 2017 +0200 +++ b/ThirdParty/CharDet/chardet/sbcharsetprober.py Tue Apr 25 18:40:46 2017 +0200 @@ -26,95 +26,107 @@ # 02110-1301 USA ######################### END LICENSE BLOCK ######################### -import sys -from . import constants from .charsetprober import CharSetProber -from .compat import wrap_ord - -SAMPLE_SIZE = 64 -SB_ENOUGH_REL_THRESHOLD = 1024 -POSITIVE_SHORTCUT_THRESHOLD = 0.95 -NEGATIVE_SHORTCUT_THRESHOLD = 0.05 -SYMBOL_CAT_ORDER = 250 -NUMBER_OF_SEQ_CAT = 4 -POSITIVE_CAT = NUMBER_OF_SEQ_CAT - 1 -#NEGATIVE_CAT = 0 +from .enums import CharacterCategory, ProbingState, SequenceLikelihood class SingleByteCharSetProber(CharSetProber): - def __init__(self, model, reversed=False, nameProber=None): - CharSetProber.__init__(self) - self._mModel = model + SAMPLE_SIZE = 64 + SB_ENOUGH_REL_THRESHOLD = 1024 # 0.25 * SAMPLE_SIZE^2 + POSITIVE_SHORTCUT_THRESHOLD = 0.95 + NEGATIVE_SHORTCUT_THRESHOLD = 0.05 + + def __init__(self, model, reversed=False, name_prober=None): + super(SingleByteCharSetProber, self).__init__() + self._model = model # TRUE if we need to reverse every pair in the model lookup - self._mReversed = reversed + self._reversed = reversed # Optional auxiliary prober for name decision - self._mNameProber = nameProber + self._name_prober = name_prober + self._last_order = None + self._seq_counters = None + self._total_seqs = None + self._total_char = None + self._freq_char = None self.reset() def reset(self): - CharSetProber.reset(self) + super(SingleByteCharSetProber, self).reset() # char order of last character - self._mLastOrder = 255 - self._mSeqCounters = [0] * NUMBER_OF_SEQ_CAT - self._mTotalSeqs = 0 - self._mTotalChar = 0 + self._last_order = 255 + self._seq_counters = [0] * SequenceLikelihood.get_num_categories() + self._total_seqs = 0 + self._total_char = 0 # characters that fall in our sampling range - self._mFreqChar = 0 + self._freq_char = 0 - def get_charset_name(self): - if self._mNameProber: - return self._mNameProber.get_charset_name() + @property + def charset_name(self): + if self._name_prober: + return self._name_prober.charset_name else: - return self._mModel['charsetName'] + return self._model['charset_name'] + + @property + def language(self): + if self._name_prober: + return self._name_prober.language + else: + return self._model.get('language') - def feed(self, aBuf): - if not self._mModel['keepEnglishLetter']: - aBuf = self.filter_without_english_letters(aBuf) - aLen = len(aBuf) - if not aLen: - return self.get_state() - for c in aBuf: - order = self._mModel['charToOrderMap'][wrap_ord(c)] - if order < SYMBOL_CAT_ORDER: - self._mTotalChar += 1 - if order < SAMPLE_SIZE: - self._mFreqChar += 1 - if self._mLastOrder < SAMPLE_SIZE: - self._mTotalSeqs += 1 - if not self._mReversed: - i = (self._mLastOrder * SAMPLE_SIZE) + order - model = self._mModel['precedenceMatrix'][i] + def feed(self, byte_str): + if not self._model['keep_english_letter']: + byte_str = self.filter_international_words(byte_str) + if not byte_str: + return self.state + char_to_order_map = self._model['char_to_order_map'] + for i, c in enumerate(byte_str): + # XXX: Order is in range 1-64, so one would think we want 0-63 here, + # but that leads to 27 more test failures than before. + order = char_to_order_map[c] + # XXX: This was SYMBOL_CAT_ORDER before, with a value of 250, but + # CharacterCategory.SYMBOL is actually 253, so we use CONTROL + # to make it closer to the original intent. The only difference + # is whether or not we count digits and control characters for + # _total_char purposes. + if order < CharacterCategory.CONTROL: + self._total_char += 1 + if order < self.SAMPLE_SIZE: + self._freq_char += 1 + if self._last_order < self.SAMPLE_SIZE: + self._total_seqs += 1 + if not self._reversed: + i = (self._last_order * self.SAMPLE_SIZE) + order + model = self._model['precedence_matrix'][i] else: # reverse the order of the letters in the lookup - i = (order * SAMPLE_SIZE) + self._mLastOrder - model = self._mModel['precedenceMatrix'][i] - self._mSeqCounters[model] += 1 - self._mLastOrder = order + i = (order * self.SAMPLE_SIZE) + self._last_order + model = self._model['precedence_matrix'][i] + self._seq_counters[model] += 1 + self._last_order = order - if self.get_state() == constants.eDetecting: - if self._mTotalSeqs > SB_ENOUGH_REL_THRESHOLD: - cf = self.get_confidence() - if cf > POSITIVE_SHORTCUT_THRESHOLD: - if constants._debug: - sys.stderr.write('%s confidence = %s, we have a' - 'winner\n' % - (self._mModel['charsetName'], cf)) - self._mState = constants.eFoundIt - elif cf < NEGATIVE_SHORTCUT_THRESHOLD: - if constants._debug: - sys.stderr.write('%s confidence = %s, below negative' - 'shortcut threshhold %s\n' % - (self._mModel['charsetName'], cf, - NEGATIVE_SHORTCUT_THRESHOLD)) - self._mState = constants.eNotMe + charset_name = self._model['charset_name'] + if self.state == ProbingState.DETECTING: + if self._total_seqs > self.SB_ENOUGH_REL_THRESHOLD: + confidence = self.get_confidence() + if confidence > self.POSITIVE_SHORTCUT_THRESHOLD: + self.logger.debug('%s confidence = %s, we have a winner', + charset_name, confidence) + self._state = ProbingState.FOUND_IT + elif confidence < self.NEGATIVE_SHORTCUT_THRESHOLD: + self.logger.debug('%s confidence = %s, below negative ' + 'shortcut threshhold %s', charset_name, + confidence, + self.NEGATIVE_SHORTCUT_THRESHOLD) + self._state = ProbingState.NOT_ME - return self.get_state() + return self.state def get_confidence(self): r = 0.01 - if self._mTotalSeqs > 0: - r = ((1.0 * self._mSeqCounters[POSITIVE_CAT]) / self._mTotalSeqs - / self._mModel['mTypicalPositiveRatio']) - r = r * self._mFreqChar / self._mTotalChar + if self._total_seqs > 0: + r = ((1.0 * self._seq_counters[SequenceLikelihood.POSITIVE]) / + self._total_seqs / self._model['typical_positive_ratio']) + r = r * self._freq_char / self._total_char if r >= 1.0: r = 0.99 return r