|
1 # -*- coding: utf-8 -*- |
|
2 """ |
|
3 pygments.lexers._stan_builtins |
|
4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
5 |
|
6 This file contains the names of functions for Stan used by |
|
7 ``pygments.lexers.math.StanLexer. |
|
8 |
|
9 :copyright: Copyright 2006-2013 by the Pygments team, see AUTHORS. |
|
10 :license: BSD, see LICENSE for details. |
|
11 """ |
|
12 |
|
13 CONSTANTS=[ 'e', |
|
14 'epsilon', |
|
15 'log10', |
|
16 'log2', |
|
17 'negative_epsilon', |
|
18 'negative_infinity', |
|
19 'not_a_number', |
|
20 'pi', |
|
21 'positive_infinity', |
|
22 'sqrt2'] |
|
23 |
|
24 FUNCTIONS=[ 'Phi', |
|
25 'abs', |
|
26 'acos', |
|
27 'acosh', |
|
28 'asin', |
|
29 'asinh', |
|
30 'atan', |
|
31 'atan2', |
|
32 'atanh', |
|
33 'bernoulli_log', |
|
34 'beta_binomial_log', |
|
35 'beta_log', |
|
36 'binary_log_loss', |
|
37 'binomial_coefficient_log', |
|
38 'categorical_log', |
|
39 'cauchy_log', |
|
40 'cbrt', |
|
41 'ceil', |
|
42 'chi_square_log', |
|
43 'cholesky_decompose', |
|
44 'col', |
|
45 'cols', |
|
46 'cos', |
|
47 'cosh', |
|
48 'determinant', |
|
49 'diag_matrix', |
|
50 'diagonal', |
|
51 'dirichlet_log', |
|
52 'dot_product', |
|
53 'dot_self', |
|
54 'double_exponential_log', |
|
55 'eigenvalues', |
|
56 'eigenvalues_sym', |
|
57 'erf', |
|
58 'erfc', |
|
59 'exp', |
|
60 'exp2', |
|
61 'expm1', |
|
62 'exponential_cdf', |
|
63 'exponential_log', |
|
64 'fabs', |
|
65 'fdim', |
|
66 'floor', |
|
67 'fma', |
|
68 'fmax', |
|
69 'fmin', |
|
70 'fmod', |
|
71 'gamma_log', |
|
72 'hypergeometric_log', |
|
73 'hypot', |
|
74 'if_else', |
|
75 'int_step', |
|
76 'inv_chi_square_log', |
|
77 'inv_cloglog', |
|
78 'inv_gamma_log', |
|
79 'inv_logit', |
|
80 'inv_wishart_log', |
|
81 'inverse', |
|
82 'lbeta', |
|
83 'lgamma', |
|
84 'lkj_corr_cholesky_log', |
|
85 'lkj_corr_log', |
|
86 'lkj_cov_log', |
|
87 'lmgamma', |
|
88 'log', |
|
89 'log10', |
|
90 'log1m', |
|
91 'log1p', |
|
92 'log1p_exp', |
|
93 'log2', |
|
94 'log_sum_exp', |
|
95 'logistic_log', |
|
96 'logit', |
|
97 'lognormal_cdf', |
|
98 'lognormal_log', |
|
99 'max', |
|
100 'mean', |
|
101 'min', |
|
102 'multi_normal_cholesky_log', |
|
103 'multi_normal_log', |
|
104 'multi_student_t_log', |
|
105 'multinomial_log', |
|
106 'multiply_log', |
|
107 'multiply_lower_tri_self_transpose', |
|
108 'neg_binomial_log', |
|
109 'normal_cdf', |
|
110 'normal_log', |
|
111 'ordered_logistic_log', |
|
112 'pareto_log', |
|
113 'poisson_log', |
|
114 'pow', |
|
115 'prod', |
|
116 'round', |
|
117 'row', |
|
118 'rows', |
|
119 'scaled_inv_chi_square_log', |
|
120 'sd', |
|
121 'sin', |
|
122 'singular_values', |
|
123 'sinh', |
|
124 'softmax', |
|
125 'sqrt', |
|
126 'square', |
|
127 'step', |
|
128 'student_t_log', |
|
129 'sum', |
|
130 'tan', |
|
131 'tanh', |
|
132 'tgamma', |
|
133 'trace', |
|
134 'trunc', |
|
135 'uniform_log', |
|
136 'variance', |
|
137 'weibull_cdf', |
|
138 'weibull_log', |
|
139 'wishart_log'] |
|
140 |
|
141 DISTRIBUTIONS=[ 'bernoulli', |
|
142 'beta', |
|
143 'beta_binomial', |
|
144 'categorical', |
|
145 'cauchy', |
|
146 'chi_square', |
|
147 'dirichlet', |
|
148 'double_exponential', |
|
149 'exponential', |
|
150 'gamma', |
|
151 'hypergeometric', |
|
152 'inv_chi_square', |
|
153 'inv_gamma', |
|
154 'inv_wishart', |
|
155 'lkj_corr', |
|
156 'lkj_corr_cholesky', |
|
157 'lkj_cov', |
|
158 'logistic', |
|
159 'lognormal', |
|
160 'multi_normal', |
|
161 'multi_normal_cholesky', |
|
162 'multi_student_t', |
|
163 'multinomial', |
|
164 'neg_binomial', |
|
165 'normal', |
|
166 'ordered_logistic', |
|
167 'pareto', |
|
168 'poisson', |
|
169 'scaled_inv_chi_square', |
|
170 'student_t', |
|
171 'uniform', |
|
172 'weibull', |
|
173 'wishart'] |
|
174 |