### Utilities/crypto/py3AES.py

Wed, 01 Jan 2014 14:38:45 +0100

author
Detlev Offenbach <detlev@die-offenbachs.de>
date
Wed, 01 Jan 2014 14:38:45 +0100
changeset 3160
209a07d7e401
parent 3039
8dd0165d805d
child 3178
f25fc1364c88
permissions
-rw-r--r--

```#!/usr/bin/python3
#
# aes.py: implements AES - Advanced Encryption Standard
# from the SlowAES project, http://code.google.com/p/slowaes/
#
# Copyright (c) 2008    Josh Davis ( http://www.josh-davis.org ),
#           Alex Martelli ( http://www.aleax.it )
#
# Ported from C code written by Laurent Haan
# ( http://www.progressive-coding.com )
#
#

#
# Ported to Python3
#
# Copyright (c) 2011 - 2014 Detlev Offenbach <detlev@die-offenbachs.de>
#

"""
Module implementing classes for encryption according
"""

import os
import math

"""
Function to pad the given data to a multiple of 16-bytes by PKCS7 padding.

@param b data to be padded (bytes)
"""
numpads = 16 - (len(b) % 16)

"""
Function to strip off PKCS7 padding.

@param b data to be stripped (bytes)
@return stripped data (bytes)
@exception ValueError data padding is invalid
"""
if len(b) % 16 or not b:
raise ValueError(
"Data of len {0} can't be PCKS7-padded".format(len(b)))
raise ValueError(
"Data ending with {0} can't be PCKS7-padded".format(b[-1]))

class AES(object):
"""
Class implementing the Advanced Encryption Standard algorithm.
"""
# valid key sizes
KeySize = {
"SIZE_128": 16,
"SIZE_192": 24,
"SIZE_256": 32,
}

# Rijndael S-box
sbox = [0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67,
0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59,
0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7,
0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1,
0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05,
0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83,
0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29,
0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b,
0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa,
0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c,
0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc,
0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec,
0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19,
0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee,
0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49,
0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4,
0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6,
0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9,
0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e,
0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1,
0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0,
0x54, 0xbb, 0x16]

# Rijndael Inverted S-box
rsbox = [0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3,
0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f,
0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54,
0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b,
0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24,
0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8,
0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d,
0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda,
0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab,
0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3,
0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1,
0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41,
0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6,
0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9,
0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d,
0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0,
0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07,
0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f,
0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5,
0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b,
0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55,
0x21, 0x0c, 0x7d]

# Rijndael Rcon
Rcon = [0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97,
0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72,
0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66,
0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04,
0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d,
0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3,
0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61,
0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a,
0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc,
0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5,
0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a,
0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d,
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c,
0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35,
0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4,
0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc,
0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08,
0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a,
0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d,
0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2,
0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74,
0xe8, 0xcb]

def __getSBoxValue(self, num):
"""
Private method to retrieve a given S-Box value.

@param num position of the value (integer)
@return value of the S-Box (integer)
"""
return self.sbox[num]

def __getSBoxInvert(self, num):
"""
Private method to retrieve a given Inverted S-Box value.

@param num position of the value (integer)
@return value of the Inverted S-Box (integer)
"""
return self.rsbox[num]

def __rotate(self, data):
"""
Private method performing Rijndael's key schedule rotate operation.

Rotate the data word eight bits to the left: eg,
rotate(1d2c3a4f) == 2c3a4f1d.

@param data data of size 4 (bytearray)
@return rotated data (bytearray)
"""
return data[1:] + data[:1]

def __getRconValue(self, num):
"""
Private method to retrieve a given Rcon value.

@param num position of the value (integer)
@return Rcon value (integer)
"""
return self.Rcon[num]

def __core(self, data, iteration):
"""
Private method performing the key schedule core operation.

@param data data to operate on (bytearray)
@param iteration iteration counter (integer)
@return modified data (bytearray)
"""
# rotate the 32-bit word 8 bits to the left
data = self.__rotate(data)
# apply S-Box substitution on all 4 parts of the 32-bit word
for i in range(4):
data[i] = self.__getSBoxValue(data[i])
# XOR the output of the rcon operation with i to the first part
# (leftmost) only
data[0] = data[0] ^ self.__getRconValue(iteration)
return data

def __expandKey(self, key, size, expandedKeySize):
"""
Private method performing Rijndael's key expansion.

Expands a 128, 192 or 256 bit key into a 176, 208 or 240 bit key.

@param key key to be expanded (bytes or bytearray)
@param size size of the key in bytes (16, 24 or 32)
@param expandedKeySize size of the expanded key (integer)
@return expanded key (bytearray)
"""
# current expanded keySize, in bytes
currentSize = 0
rconIteration = 1
expandedKey = bytearray(expandedKeySize)

# set the 16, 24, 32 bytes of the expanded key to the input key
for j in range(size):
expandedKey[j] = key[j]
currentSize += size

while currentSize < expandedKeySize:
# assign the previous 4 bytes to the temporary value t
t = expandedKey[currentSize - 4:currentSize]

# every 16, 24, 32 bytes we apply the core schedule to t
# and increment rconIteration afterwards
if currentSize % size == 0:
t = self.__core(t, rconIteration)
rconIteration += 1
# For 256-bit keys, we add an extra sbox to the calculation
if size == self.KeySize["SIZE_256"] and \
((currentSize % size) == 16):
for l in range(4):
t[l] = self.__getSBoxValue(t[l])

# We XOR t with the four-byte block 16, 24, 32 bytes before the new
# expanded key. This becomes the next four bytes in the expanded
# key.
for m in range(4):
expandedKey[currentSize] = \
expandedKey[currentSize - size] ^ t[m]
currentSize += 1

return expandedKey

"""
Private method to add (XORs) the round key to the state.

@param state state to be changed (bytearray)
@param roundKey key to be used for the modification (bytearray)
@return modified state (bytearray)
"""
buf = state[:]
for i in range(16):
buf[i] ^= roundKey[i]
return buf

def __createRoundKey(self, expandedKey, roundKeyPointer):
"""
Private method to create a round key.

@param expandedKey expanded key to be used (bytearray)
@param roundKeyPointer position within the expanded key (integer)
@return round key (bytearray)
"""
roundKey = bytearray(16)
for i in range(4):
for j in range(4):
roundKey[j * 4 + i] = expandedKey[roundKeyPointer + i * 4 + j]
return roundKey

def __galois_multiplication(self, a, b):
"""
Private method to perform a Galois multiplication of 8 bit characters
a and b.

@param a first factor (byte)
@param b second factor (byte)
@return result (byte)
"""
p = 0
for counter in range(8):
if b & 1:
p ^= a
hi_bit_set = a & 0x80
a <<= 1
# keep a 8 bit
a &= 0xFF
if hi_bit_set:
a ^= 0x1b
b >>= 1
return p

def __subBytes(self, state, isInv):
"""
Private method to substitute all the values from the state with the
value in the SBox using the state value as index for the SBox.

@param state state to be worked on (bytearray)
@param isInv flag indicating an inverse operation (boolean)
@return modified state (bytearray)
"""
state = state[:]
if isInv:
getter = self.__getSBoxInvert
else:
getter = self.__getSBoxValue
for i in range(16):
state[i] = getter(state[i])
return state

def __shiftRows(self, state, isInv):
"""
Private method to iterate over the 4 rows and call __shiftRow() with
that row.

@param state state to be worked on (bytearray)
@param isInv flag indicating an inverse operation (boolean)
@return modified state (bytearray)
"""
state = state[:]
for i in range(4):
state = self.__shiftRow(state, i * 4, i, isInv)
return state

def __shiftRow(self, state, statePointer, nbr, isInv):
"""
Private method to shift the bytes of a row to the left.

@param state state to be worked on (bytearray)
@param statePointer index into the state (integer)
@param nbr number of positions to shift (integer)
@param isInv flag indicating an inverse operation (boolean)
@return modified state (bytearray)
"""
state = state[:]
for i in range(nbr):
if isInv:
state[statePointer:statePointer + 4] = \
state[statePointer + 3:statePointer + 4] + \
state[statePointer:statePointer + 3]
else:
state[statePointer:statePointer + 4] = \
state[statePointer + 1:statePointer + 4] + \
state[statePointer:statePointer + 1]
return state

def __mixColumns(self, state, isInv):
"""
Private method to perform a galois multiplication of the 4x4 matrix.

@param state state to be worked on (bytearray)
@param isInv flag indicating an inverse operation (boolean)
@return modified state (bytearray)
"""
state = state[:]
# iterate over the 4 columns
for i in range(4):
# construct one column by slicing over the 4 rows
column = state[i:i + 16:4]
# apply the __mixColumn on one column
column = self.__mixColumn(column, isInv)
# put the values back into the state
state[i:i + 16:4] = column

return state

# galois multiplication of 1 column of the 4x4 matrix
def __mixColumn(self, column, isInv):
"""
Private method to perform a galois multiplication of 1 column the
4x4 matrix.

@param column column to be worked on (bytearray)
@param isInv flag indicating an inverse operation (boolean)
@return modified column (bytearray)
"""
column = column[:]
if isInv:
mult = [14, 9, 13, 11]
else:
mult = [2, 1, 1, 3]
cpy = column[:]
g = self.__galois_multiplication

column[0] = g(cpy[0], mult[0]) ^ g(cpy[3], mult[1]) ^ \
g(cpy[2], mult[2]) ^ g(cpy[1], mult[3])
column[1] = g(cpy[1], mult[0]) ^ g(cpy[0], mult[1]) ^ \
g(cpy[3], mult[2]) ^ g(cpy[2], mult[3])
column[2] = g(cpy[2], mult[0]) ^ g(cpy[1], mult[1]) ^ \
g(cpy[0], mult[2]) ^ g(cpy[3], mult[3])
column[3] = g(cpy[3], mult[0]) ^ g(cpy[2], mult[1]) ^ \
g(cpy[1], mult[2]) ^ g(cpy[0], mult[3])
return column

def __aes_round(self, state, roundKey):
"""
Private method to apply the 4 operations of the forward round in
sequence.

@param state state to be worked on (bytearray)
@param roundKey round key to be used (bytearray)
@return modified state (bytearray)
"""
state = self.__subBytes(state, False)
state = self.__shiftRows(state, False)
state = self.__mixColumns(state, False)
return state

def __aes_invRound(self, state, roundKey):
"""
Private method to apply the 4 operations of the inverse round in
sequence.

@param state state to be worked on (bytearray)
@param roundKey round key to be used (bytearray)
@return modified state (bytearray)
"""
state = self.__shiftRows(state, True)
state = self.__subBytes(state, True)
state = self.__mixColumns(state, True)
return state

def __aes_main(self, state, expandedKey, nbrRounds):
"""
Private method to do the AES encryption for one round.

Perform the initial operations, the standard round, and the
final operations of the forward AES, creating a round key for
each round.

@param state state to be worked on (bytearray)
@param expandedKey expanded key to be used (bytearray)
@param nbrRounds number of rounds to be done (integer)
@return modified state (bytearray)
"""
state, self.__createRoundKey(expandedKey, 0))
i = 1
while i < nbrRounds:
state = self.__aes_round(
state, self.__createRoundKey(expandedKey, 16 * i))
i += 1
state = self.__subBytes(state, False)
state = self.__shiftRows(state, False)
state, self.__createRoundKey(expandedKey, 16 * nbrRounds))
return state

def __aes_invMain(self, state, expandedKey, nbrRounds):
"""
Private method to do the inverse AES encryption for one round.

Perform the initial operations, the standard round, and the
final operations of the inverse AES, creating a round key for
each round.

@param state state to be worked on (bytearray)
@param expandedKey expanded key to be used (bytearray)
@param nbrRounds number of rounds to be done (integer)
@return modified state (bytearray)
"""
state, self.__createRoundKey(expandedKey, 16 * nbrRounds))
i = nbrRounds - 1
while i > 0:
state = self.__aes_invRound(
state, self.__createRoundKey(expandedKey, 16 * i))
i -= 1
state = self.__shiftRows(state, True)
state = self.__subBytes(state, True)
state, self.__createRoundKey(expandedKey, 0))
return state

def encrypt(self, iput, key, size):
"""
Public method to encrypt a 128 bit input block against the given key
of size specified.

@param iput input data (bytearray)
@param key key to be used (bytes or bytearray)
@param size key size (16, 24 or 32)
@return encrypted data (bytes)
@exception ValueError key size is invalid
"""
output = bytearray(16)
# the number of rounds
nbrRounds = 0
# the 128 bit block to encode
block = bytearray(16)
# set the number of rounds
if size == self.KeySize["SIZE_128"]:
nbrRounds = 10
elif size == self.KeySize["SIZE_192"]:
nbrRounds = 12
elif size == self.KeySize["SIZE_256"]:
nbrRounds = 14
else:
raise ValueError("Wrong key size given ({0}).".format(size))

# the expanded keySize
expandedKeySize = 16 * (nbrRounds + 1)

# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3
#
# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[i + j * 4] = iput[i * 4 + j]

# expand the key into an 176, 208, 240 bytes key
# the expanded key
expandedKey = self.__expandKey(key, size, expandedKeySize)

# encrypt the block using the expandedKey
block = self.__aes_main(block, expandedKey, nbrRounds)

# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[k * 4 + l] = block[k + l * 4]
return bytes(output)

# decrypts a 128 bit input block against the given key of size specified
def decrypt(self, iput, key, size):
"""
Public method to decrypt a 128 bit input block against the given key
of size specified.

@param iput input data (bytearray)
@param key key to be used (bytes or bytearray)
@param size key size (16, 24 or 32)
@return decrypted data (bytes)
@exception ValueError key size is invalid
"""
output = bytearray(16)
# the number of rounds
nbrRounds = 0
# the 128 bit block to decode
block = bytearray(16)
# set the number of rounds
if size == self.KeySize["SIZE_128"]:
nbrRounds = 10
elif size == self.KeySize["SIZE_192"]:
nbrRounds = 12
elif size == self.KeySize["SIZE_256"]:
nbrRounds = 14
else:
raise ValueError("Wrong key size given ({0}).".format(size))

# the expanded keySize
expandedKeySize = 16 * (nbrRounds + 1)

# Set the block values, for the block:
# a0,0 a0,1 a0,2 a0,3
# a1,0 a1,1 a1,2 a1,3
# a2,0 a2,1 a2,2 a2,3
# a3,0 a3,1 a3,2 a3,3
# the mapping order is a0,0 a1,0 a2,0 a3,0 a0,1 a1,1 ... a2,3 a3,3

# iterate over the columns
for i in range(4):
# iterate over the rows
for j in range(4):
block[i + j * 4] = iput[i * 4 + j]
# expand the key into an 176, 208, 240 bytes key
expandedKey = self.__expandKey(key, size, expandedKeySize)
# decrypt the block using the expandedKey
block = self.__aes_invMain(block, expandedKey, nbrRounds)
# unmap the block again into the output
for k in range(4):
# iterate over the rows
for l in range(4):
output[k * 4 + l] = block[k + l * 4]
return output

class AESModeOfOperation(object):
"""
Class implementing the different AES mode of operations.
"""
aes = AES()

# structure of supported modes of operation
ModeOfOperation = {
"OFB": 0,
"CFB": 1,
"CBC": 2,
}

def __extractBytes(self, input, start, end, mode):
"""
Private method to extract a range of bytes from the input.

@param input input data (bytes)
@param start start index (integer)
@param end end index (integer)
@param mode mode of operation (0, 1, 2)
@return extracted bytes (bytearray)
"""
if end - start > 16:
end = start + 16
if mode == self.ModeOfOperation["CBC"]:
ar = bytearray(16)
else:
ar = bytearray()

i = start
j = 0
while len(ar) < end - start:
ar.append(0)
while i < end:
ar[j] = input[i]
j += 1
i += 1
return ar

def encrypt(self, input, mode, key, size, IV):
"""
Public method to perform the encryption operation.

@param input data to be encrypted (bytes)
@param mode mode of operation (0, 1 or 2)
@param key key to be used (bytes)
@param size length of the key (16, 24 or 32)
@param IV initialisation vector (bytearray)
@return tuple with mode of operation, length of the input and
the encrypted data (integer, integer, bytes)
@exception ValueError key size is invalid or decrypted data is invalid
"""
if len(key) % size:
raise ValueError("Illegal size ({0}) for key '{1}'.".format(
size, key))
if len(IV) % 16:
raise ValueError("IV is not a multiple of 16.")
# the AES input/output
iput = bytearray(16)
output = bytearray()
ciphertext = bytearray(16)
# the output cipher string
cipherOut = bytearray()
# char firstRound
firstRound = True
if input:
for j in range(int(math.ceil(float(len(input)) / 16))):
start = j * 16
end = j * 16 + 16
if end > len(input):
end = len(input)
plaintext = self.__extractBytes(input, start, end, mode)
# print 'PT@%s:%s' % (j, plaintext)
if mode == self.ModeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext) - 1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output) - 1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext) - 1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end - start):
cipherOut.append(ciphertext[k])
iput = ciphertext
elif mode == self.ModeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(plaintext) - 1 < i:
ciphertext[i] = 0 ^ output[i]
elif len(output) - 1 < i:
ciphertext[i] = plaintext[i] ^ 0
elif len(plaintext) - 1 < i and len(output) < i:
ciphertext[i] = 0 ^ 0
else:
ciphertext[i] = plaintext[i] ^ output[i]
for k in range(end - start):
cipherOut.append(ciphertext[k])
iput = output
elif mode == self.ModeOfOperation["CBC"]:
for i in range(16):
if firstRound:
iput[i] = plaintext[i] ^ IV[i]
else:
iput[i] = plaintext[i] ^ ciphertext[i]
# print 'IP@%s:%s' % (j, iput)
firstRound = False
ciphertext = self.aes.encrypt(iput, key, size)
# always 16 bytes because of the padding for CBC
for k in range(16):
cipherOut.append(ciphertext[k])
return mode, len(input), bytes(cipherOut)

# Mode of Operation Decryption
# cipherIn - Encrypted String
# originalsize - The unencrypted string length - required for CBC
# mode - mode of type modeOfOperation
# key - a number array of the bit length size
# size - the bit length of the key
# IV - the 128 bit number array Initilization Vector
def decrypt(self, cipherIn, originalsize, mode, key, size, IV):
"""
Public method to perform the decryption operation.

@param cipherIn data to be decrypted (bytes)
@param originalsize unencrypted string length (required for CBC)
(integer)
@param mode mode of operation (0, 1 or 2)
@param key key to be used (bytes)
@param size length of the key (16, 24 or 32)
@param IV initialisation vector (bytearray)
@return decrypted data (bytes)
@exception ValueError key size is invalid or decrypted data is invalid
"""
if len(key) % size:
raise ValueError("Illegal size ({0}) for key '{1}'.".format(
size, key))
if len(IV) % 16:
raise ValueError("IV is not a multiple of 16.")
# the AES input/output
ciphertext = bytearray()
iput = bytearray()
output = bytearray()
plaintext = bytearray(16)
# the output bytes
bytesOut = bytearray()
# char firstRound
firstRound = True
if cipherIn is not None:
for j in range(int(math.ceil(float(len(cipherIn)) / 16))):
start = j * 16
end = j * 16 + 16
if j * 16 + 16 > len(cipherIn):
end = len(cipherIn)
ciphertext = cipherIn[start:end]
if mode == self.ModeOfOperation["CFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output) - 1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext) - 1 < i:
plaintext[i] = output[i] ^ 0
elif len(output) - 1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end - start):
bytesOut.append(plaintext[k])
iput = ciphertext
elif mode == self.ModeOfOperation["OFB"]:
if firstRound:
output = self.aes.encrypt(IV, key, size)
firstRound = False
else:
output = self.aes.encrypt(iput, key, size)
for i in range(16):
if len(output) - 1 < i:
plaintext[i] = 0 ^ ciphertext[i]
elif len(ciphertext) - 1 < i:
plaintext[i] = output[i] ^ 0
elif len(output) - 1 < i and len(ciphertext) < i:
plaintext[i] = 0 ^ 0
else:
plaintext[i] = output[i] ^ ciphertext[i]
for k in range(end - start):
bytesOut.append(plaintext[k])
iput = output
elif mode == self.ModeOfOperation["CBC"]:
output = self.aes.decrypt(ciphertext, key, size)
for i in range(16):
if firstRound:
plaintext[i] = IV[i] ^ output[i]
else:
plaintext[i] = iput[i] ^ output[i]
firstRound = False
if originalsize is not None and originalsize < end:
for k in range(originalsize - start):
bytesOut.append(plaintext[k])
else:
for k in range(end - start):
bytesOut.append(plaintext[k])
iput = ciphertext
return bytes(bytesOut)

def encryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]):
"""
Module function to encrypt the given data with the given key.

@param key key to be used for encryption (bytes)
@param data data to be encrypted (bytes)
@param mode mode of operations (0, 1 or 2)
@return encrypted data prepended with the initialization vector (bytes)
"""
key = bytearray(key)
if mode == AESModeOfOperation.ModeOfOperation["CBC"]:
keysize = len(key)
assert keysize in AES.KeySize.values(), \
'invalid key size: {0}'.format(keysize)
# create a new iv using random data
iv = bytearray([i for i in os.urandom(16)])
moo = AESModeOfOperation()
mode, length, ciph = moo.encrypt(data, mode, key, keysize, iv)
# With padding, the original length does not need to be known. It's a bad
# idea to store the original message length.
# prepend the iv.
return bytes(iv) + bytes(ciph)

def decryptData(key, data, mode=AESModeOfOperation.ModeOfOperation["CBC"]):
"""
Module function to decrypt the given data with the given key.

@param key key to be used for decryption (bytes)
@param data data to be decrypted (with initialization vector prepended)
(bytes)
@param mode mode of operations (0, 1 or 2)
@return decrypted data (bytes)
"""
key = bytearray(key)
keysize = len(key)
assert keysize in AES.KeySize.values(), 'invalid key size: %s' % keysize
# iv is first 16 bytes
iv = bytearray(data[:16])
data = bytearray(data[16:])
moo = AESModeOfOperation()
decr = moo.decrypt(data, None, mode, key, keysize, iv)
if mode == AESModeOfOperation.ModeOfOperation["CBC"]: